Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genes Dev ; 37(17-18): 801-817, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734835

RESUMEN

Polycomb repressive complex 2 (PRC2) mediates epigenetic silencing of target genes in animals and plants. In Arabidopsis, PRC2 is required for the cold-induced epigenetic silencing of the FLC floral repressor locus to align flowering with spring. During this process, PRC2 relies on VEL accessory factors, including the constitutively expressed VRN5 and the cold-induced VIN3. The VEL proteins are physically associated with PRC2, but their individual functions remain unclear. Here, we show an intimate association between recombinant VRN5 and multiple components within a reconstituted PRC2, dependent on a compact conformation of VRN5 central domains. Key residues mediating this compact conformation are conserved among VRN5 orthologs across the plant kingdom. In contrast, VIN3 interacts with VAL1, a transcriptional repressor that binds directly to FLC These associations differentially affect their role in H3K27me deposition: Both proteins are required for H3K27me3, but only VRN5 is necessary for H3K27me2. Although originally defined as vernalization regulators, VIN3 and VRN5 coassociate with many targets in the Arabidopsis genome that are modified with H3K27me3. Our work therefore reveals the distinct accessory roles for VEL proteins in conferring cold-induced silencing on FLC, with broad relevance for PRC2 targets generally.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Flores/genética , Flores/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
2.
Plant Cell ; 34(10): 3873-3898, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35866980

RESUMEN

Copper (Cu) is a cofactor of around 300 Arabidopsis proteins, including photosynthetic and mitochondrial electron transfer chain enzymes critical for adenosine triphosphate (ATP) production and carbon fixation. Plant acclimation to Cu deficiency requires the transcription factor SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7). We report that in the wild type (WT) and in the spl7-1 mutant, respiratory electron flux via Cu-dependent cytochrome c oxidase is unaffected under both normal and low-Cu cultivation conditions. Supplementing Cu-deficient medium with exogenous sugar stimulated growth of the WT, but not of spl7 mutants. Instead, these mutants accumulated carbohydrates, including the signaling sugar trehalose 6-phosphate, as well as ATP and NADH, even under normal Cu supply and without sugar supplementation. Delayed spl7-1 development was in agreement with its attenuated sugar responsiveness. Functional TARGET OF RAPAMYCIN and SNF1-RELATED KINASE1 signaling in spl7-1 argued against fundamental defects in these energy-signaling hubs. Sequencing of chromatin immunoprecipitates combined with transcriptome profiling identified direct targets of SPL7-mediated positive regulation, including Fe SUPEROXIDE DISMUTASE1 (FSD1), COPPER-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1), and the uncharacterized bHLH23 (CITF2), as well as an enriched upstream GTACTRC motif. In summary, transducing energy availability into growth and reproductive development requires the function of SPL7. Our results could help increase crop yields, especially on Cu-deficient soils.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cobre/química , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , NAD/metabolismo , Fosfatos/metabolismo , Sirolimus , Suelo , Superóxidos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trehalosa/metabolismo
3.
Scand J Psychol ; 62(6): 787-797, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34148239

RESUMEN

We determined the effects of age and sleep deprivation on driving and spatial perception in a virtual reality environment. Twenty-two young (mean age: 22 years, range: 18-35) and 23 old (mean age: 71 years, range: 65-79) participants were tested after a normal night of sleep and a night of sleep deprivation. The participants drove a virtual car while responding to uni- and bilateral visual and auditory stimuli. Driving errors (crossing the lane borders), reaction times and accuracy to visual and auditory stimuli, performance in psychological tests, and subjective driving ability and tiredness were measured. Age had no effect on the number of driving errors, whereas sleep deprivation increased significantly especially the number of left lane border crossings. Age increased the number of stimulus detection errors, while sleep deprivation increased the number of errors particularly in the young and in the auditory modality as response omissions. Age and sleep deprivation together increased the number of response omissions in both modalities. Left side stimulus omissions suggest a bias to the right hemispace. The subjective evaluations were consistent with the objective measures. The psychological tests were more sensitive to the effects of age than to those of sleep deprivation. Driving simulation in a virtual reality setting is sensitive in detecting the effects of deteriorating factors on both driving and simultaneous spatial perception.


Asunto(s)
Factores de Edad , Conducción de Automóvil , Privación de Sueño , Procesamiento Espacial , Realidad Virtual , Adolescente , Adulto , Anciano , Humanos , Masculino , Percepción , Tiempo de Reacción , Adulto Joven
4.
Cell Rep ; 41(6): 111607, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351412

RESUMEN

Transcriptional silencing through the Polycomb silencing machinery utilizes a "read-write" mechanism involving histone tail modifications. However, nucleation of silencing and long-term stable transmission of the silenced state also requires P-olycomb Repressive Complex 2 (PRC2) accessory proteins, whose molecular role is poorly understood. The Arabidopsis VEL proteins are accessory proteins that interact with PRC2 to nucleate and propagate silencing at the FLOWERING LOCUS C (FLC) locus, enabling early flowering in spring. Here, we report that VEL proteins contain a domain related to an atypical four-helix bundle that engages in spontaneous concentration-dependent head-to-tail polymerization to assemble dynamic biomolecular condensates. Mutations blocking polymerization of this VEL domain prevent Polycomb silencing at FLC. Plant VEL proteins thus facilitate assembly of dynamic multivalent Polycomb complexes required for inheritance of the silenced state.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Polimerizacion , Silenciador del Gen , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Flores/genética , Flores/metabolismo
5.
Nat Commun ; 13(1): 4009, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817801

RESUMEN

Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal -1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Mamíferos/metabolismo , Ratones , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Curr Opin Plant Biol ; 61: 102012, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662809

RESUMEN

How epigenetic memory states are established and maintained is a central question in gene regulation. A major epigenetic process important for developmental biology involves Polycomb-mediated chromatin silencing. Significant progress has recently been made on elucidating Polycomb silencing in plant systems through analysis of Arabidopsis FLOWERING LOCUS C (FLC). Quantitative silencing of FLC by prolonged cold exposure was shown to represent an ON to OFF switch in an increasing proportion of cells. Here, we review the underlying all-or-nothing, digital paradigm for Polycomb epigenetic silencing. We then examine other Arabidopsis Polycomb-regulated targets where digital regulation may also be relevant.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Dominio MADS , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío , Epigénesis Genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
7.
Plant Direct ; 3(7): e00150, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31276083

RESUMEN

The genome of Arabidopsis thaliana encodes approximately 260 copper (Cu)-dependent proteins, which includes enzymes in central pathways of photosynthesis, respiration and responses to environmental stress. Under Cu-deficient growth conditions, Squamosa promoter binding Protein-Like 7 (SPL7) activates the transcription of genes encoding Cu acquisition systems, and it mediates a metabolic reorganization to economize on Cu. The transcription factor SPL7 groups among comparably large proteins in the SPL family, which additionally comprises a second group of small SPL proteins targeted by miRNA156 with roles in plant development. SPL7 shares extended regions of sequence homology with SPL1 and SPL12. Therefore, we investigated the possibility of a functional overlap between these three members of the group of large SPL family proteins. We compared the spl1 spl12 double mutant and the spl1 spl7 spl12 triple mutant with both the wild type and the spl7 single mutant under normal and Cu-deficient growth conditions. Biomass production, chlorophyll content and tissue elemental composition at the seedling stage, as well as plant and flower morphology during reproductive stages, confirmed the involvement of SPL7, but provided no indication for important roles of SPL1 or SPL12 in the acclimation of Arabidopsis to Cu deficiency. Furthermore, we analyzed the effects of zinc (Zn) deficiency on the same set of mutants. Different from what is known in the green alga Chlamydomonas reinhardtii, Arabidopsis did not activate Cu deficiency responses under Zn deficiency, and there was no Cu overaccumulation in either shoot or root tissues of Zn-deficient wild type plants. Known Zn deficiency responses were unaltered in spl7, spl1 spl12 and spl1 spl7 spl12 mutants. We observed that CuZnSOD activity is strongly downregulated in Zn-deficient A. thaliana, in association with an about 94% reduction in the abundance of the CSD2 transcript, a known target of miR398. However, different from the known Cu deficiency responses of Arabidopsis, this Zn deficiency response was independent of SPL7 and not associated with an upregulation of MIR398b primary transcript levels. Our data suggest that there is no conservation in A. thaliana of the crosstalk between Zn and Cu homeostasis mediated by the single SPL family protein CRR1 of Chlamydomonas. In the future, resolving how the specificity of SPL protein activation and recognition of target gene promoters is achieved will advance our understanding of the specific functions of different SPL family proteins in the regulation of either Cu deficiency responses or growth and development of land plants.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda