Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Biol Chem ; 300(6): 107372, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754781

RESUMEN

OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 µM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 µM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 µM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.

2.
FASEB J ; 35(6): e21648, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33993565

RESUMEN

Serotonin is an important signaling molecule in the periphery and in the brain. The hydroxylation of tryptophan is the first and rate-limiting step of its synthesis. In most vertebrates, two enzymes have been described to catalyze this step, tryptophan hydroxylase (TPH) 1 and 2, with expression localized to peripheral and neuronal cells, respectively. However, animals lacking both TPH isoforms still exhibit about 10% of normal serotonin levels in the blood demanding an additional source of the monoamine. In this study, we provide evidence by the gain and loss of function approaches in in vitro and in vivo systems, including stable-isotope tracing in mice, that phenylalanine hydroxylase (PAH) is a third TPH in mammals. PAH contributes to serotonin levels in the blood, and may be important as a local source of serotonin in organs in which no other TPHs are expressed, such as liver and kidney.


Asunto(s)
Encéfalo/metabolismo , Hepatocitos/metabolismo , Serotonina/biosíntesis , Triptófano Hidroxilasa/metabolismo , Animales , Encéfalo/citología , Hepatocitos/citología , Ratones
3.
Proc Natl Acad Sci U S A ; 114(36): E7545-E7553, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827330

RESUMEN

Age-related macular degeneration (AMD) is the most common cause of blindness for individuals age 50 and above in the developed world. Abnormal growth of choroidal blood vessels, or choroidal neovascularization (CNV), is a hallmark of the neovascular (wet) form of advanced AMD and leads to significant vision loss. A growing body of evidence supports a strong link between neovascular disease and inflammation. Metabolites of long-chain polyunsaturated fatty acids derived from the cytochrome P450 (CYP) monooxygenase pathway serve as vital second messengers that regulate a number of hormones and growth factors involved in inflammation and vascular function. Using transgenic mice with altered CYP lipid biosynthetic pathways in a mouse model of laser-induced CNV, we characterized the role of these lipid metabolites in regulating neovascular disease. We discovered that the CYP-derived lipid metabolites epoxydocosapentaenoic acids (EDPs) and epoxyeicosatetraenoic acids (EEQs) are vital in dampening CNV severity. Specifically, overexpression of the monooxygenase CYP2C8 or genetic ablation or inhibition of the soluble epoxide hydrolase (sEH) enzyme led to increased levels of EDP and EEQ with attenuated CNV development. In contrast, when we promoted the degradation of these CYP-derived metabolites by transgenic overexpression of sEH, the protective effect against CNV was lost. We found that these molecules work in part through their ability to regulate the expression of key leukocyte adhesion molecules, on both leukocytes and endothelial cells, thereby mediating leukocyte recruitment. These results suggest that CYP lipid signaling molecules and their regulators are potential therapeutic targets in neovascular diseases.


Asunto(s)
Neovascularización Coroidal/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Metabolismo de los Lípidos/fisiología , Sistemas de Mensajero Secundario/fisiología , Animales , Citocromo P-450 CYP2C8/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Epóxido Hidrolasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Leucocitos/metabolismo , Degeneración Macular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
J Lipid Res ; 60(1): 135-148, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30409844

RESUMEN

A chiral lipidomics approach was established for comprehensive profiling of regio- and stereoisomeric monoepoxy and monohydroxy metabolites of long-chain PUFAs as generated enzymatically by cytochromes P450 (CYPs), lipoxygenases (LOXs), and cyclooxygenases (COXs) and, in part, also unspecific oxidations. The method relies on reversed-phase chiral-LC coupled with ESI/MS/MS. Applications revealed partially opposing enantioselectivities of soluble and microsomal epoxide hydrolases (mEHs). Ablation of the soluble epoxide hydrolase (sEH) gene resulted in specific alterations in the enantiomeric composition of endogenous monoepoxy metabolites. For example, the (R,S)/(S,R)-ratio of circulating 14,15-EET changed from 2.1:1 in WT to 9.7:1 in the sEH-KO mice. Studies with liver microsomes suggested that CYP/mEH interactions play a primary role in determining the enantiomeric composition of monoepoxy metabolites during their generation and release from the ER. Analysis of human plasma showed significant enantiomeric excess with several monoepoxy metabolites. Monohydroxy metabolites were generally present as racemates; however, Ca2+-ionophore stimulation of whole blood samples resulted in enantioselective increases of LOX-derived metabolites (12S-HETE and 17S-hydroxydocosahexaenoic acid) and COX-derived metabolites (11R-HETE). Our chiral approach may provide novel opportunities for investigating the role of bioactive lipid mediators that generally exert their physiological functions in a highly regio- and stereospecific manner.


Asunto(s)
Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Lipidómica , Animales , Epóxido Hidrolasas/química , Epóxido Hidrolasas/deficiencia , Epóxido Hidrolasas/genética , Ácidos Grasos Insaturados/sangre , Técnicas de Inactivación de Genes , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Microsomas/metabolismo , Oxilipinas/sangre , Oxilipinas/química , Oxilipinas/metabolismo , Solubilidad , Estereoisomerismo
5.
Am J Physiol Renal Physiol ; 314(3): F430-F438, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070570

RESUMEN

We tested the hypothesis that hypoxia-reoxygenation (H/R) augments vasoreactivity to angiotensin II (ANG II). In particular, we compared an in situ live kidney slice model with isolated afferent arterioles (C57Bl6 mice) to assess the impact of tubules on microvessel response. Hematoxylin and eosin staining was used to estimate slice viability. Arterioles in the slices were located by differential interference contrast microscopy, and responses to vasoactive substances were assessed. Cytosolic calcium transients and NADPH oxidase (NOX) mRNA expression were studied in isolated afferent arterioles. SOD activity was measured in live slices. Both experimental models were subjected to control and H/R treatment (60 min). Slices were further analyzed after 30-, 60-, and 90-min hypoxia followed by 10- or 20-min reoxygenation (H/R). H/R resulted in enhanced necrotic tissue damage compared with control conditions. To characterize the slice model, we applied ANG II (10-7 M), norepinephrine (NE; 10-5 M), endothelin-1 (ET-1; 10-7 M), and ATP (10-4 M), reducing the initial diameter to 44.5 ± 2.8, 50.0 ± 2.2, 45.3 ± 2.6, and 74.1 ± 1.8%, respectively. H/R significantly increased the ANG II response compared with control in live slices and in isolated afferent arterioles, although calcium transients remained similar. TEMPOL incubation prevented the H/R effect on ANG II responses. H/R significantly increased NOX2 mRNA expression in isolated arterioles. SOD activity was significantly decreased after H/R. Enhanced arteriolar responses after H/R occurred independently from the surrounding tissue, indicating no influence of tubules on vascular function in this model. The mechanism of increased ANG II response after H/R might be increased oxidative stress and increased calcium sensitivity of the contractile apparatus.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Angiotensina II/farmacología , Arteriolas/efectos de los fármacos , Riñón/irrigación sanguínea , Daño por Reperfusión/fisiopatología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Arteriolas/fisiopatología , Señalización del Calcio/efectos de los fármacos , Técnicas In Vitro , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Túbulos Renales/fisiopatología , Ratones Endogámicos C57BL , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Necrosis , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 36(8): 1534-48, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27283742

RESUMEN

OBJECTIVE: Drug-eluting coronary stents reduce restenosis rate and late lumen loss compared with bare-metal stents; however, drug-eluting coronary stents may delay vascular healing and increase late stent thrombosis. The peroxisome proliferator-activated receptor-delta (PPARδ) exhibits actions that could favorably influence outcomes after drug-eluting coronary stents placement. APPROACH AND RESULTS: Here, we report that PPARδ ligand-coated stents strongly reduce the development of neointima and luminal narrowing in a rabbit model of experimental atherosclerosis. Inhibition of inflammatory gene expression and vascular smooth muscle cell (VSMC) proliferation and migration, prevention of thrombocyte activation and aggregation, and proproliferative effects on endothelial cells were identified as key mechanisms for the prevention of restenosis. Using normal and PPARδ-depleted VSMCs, we show that the observed effects of PPARδ ligand GW0742 on VSMCs and thrombocytes are PPARδ receptor dependent. PPARδ ligand treatment induces expression of pyruvate dehydrogenase kinase isozyme 4 and downregulates the glucose transporter 1 in VSMCs, thus impairing the ability of VSMCs to provide the increased energy demands required for growth factor-stimulated proliferation and migration. CONCLUSIONS: In contrast to commonly used drugs for stent coating, PPARδ ligands not only inhibit inflammatory response and proliferation of VSMCs but also prevent thrombocyte activation and support vessel re-endothelialization. Thus, pharmacological PPARδ activation could be a promising novel strategy to improve drug-eluting coronary stents outcomes.


Asunto(s)
Angioplastia de Balón/instrumentación , Aorta/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Fármacos Cardiovasculares/administración & dosificación , Stents Liberadores de Fármacos , PPAR delta/agonistas , Esteroides/administración & dosificación , Trombosis/prevención & control , Angioplastia de Balón/efectos adversos , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/terapia , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Neointima , PPAR delta/deficiencia , PPAR delta/genética , PPAR delta/metabolismo , Activación Plaquetaria/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ratas , Ratas Sprague-Dawley , Repitelización/efectos de los fármacos , Recurrencia , Transducción de Señal/efectos de los fármacos , Trombosis/etiología , Trombosis/metabolismo , Trombosis/patología , Factores de Tiempo
7.
Prostaglandins Other Lipid Mediat ; 133: 93-102, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28442442

RESUMEN

Polyunsaturated fatty acids (PUFA) and their cytochrome P450 (CYP450) metabolites have been linked to angiogenesis and vessel homeostasis. However, the role of individual CYP isoforms and their endogenous metabolites in those processes are not clear. Here, we focused on the role of Cyp2c44 in postnatal retinal angiogenesis and report that Cyp2c44 is highly expressed in Müller glial cells in the retina. The constitutive as well as inducible postnatal genetic deletion of Cyp2c44 resulted in an increased vessel network density without affecting vessel radial expansion during the first postnatal week. This phenotype was associated with an increased endothelial cell proliferation and attenuated Notch signaling. LC-MS/MS analyses revealed that levels of hydroxydocosahexaenoic acids (HDHA), i.e., 10-, 17- and 20-HDHA were significantly elevated in retinas from 5day old Cyp2c44-/- mice compared to their wild-type littermates. Enzymatic activity assays revealed that HDHAs were potential substrates for Cyp2c44 which could account for the increased levels of HDHAs in retinas from Cyp2c44-/- mice. These data indicate that Cyp2c44 is expressed in the murine retina and, like the soluble epoxide hydrolase, is expressed in Müller glia cells. The enhanced endothelial cell proliferation and Notch inhibition seen in retinas from Cyp2c44-deficient mice indicate a role for Cyp2c44-derived lipid mediators in physiological angiogenesis.


Asunto(s)
Familia 2 del Citocromo P450/metabolismo , Células Ependimogliales/enzimología , Neovascularización Fisiológica , Retina/fisiología , Animales , Proliferación Celular , Familia 2 del Citocromo P450/deficiencia , Familia 2 del Citocromo P450/genética , Ácidos Docosahexaenoicos/metabolismo , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Retina/citología
8.
Proc Natl Acad Sci U S A ; 111(26): 9603-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979774

RESUMEN

Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)-epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD.


Asunto(s)
Neovascularización Coroidal/tratamiento farmacológico , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos Omega-3/farmacología , Alimentos Fortificados , Degeneración Macular/fisiopatología , Animales , Ácidos Araquidónicos , Cromatografía Liquida , ADN Complementario/genética , Ensayo de Inmunoadsorción Enzimática , Ácidos Grasos Omega-3/uso terapéutico , Citometría de Flujo , Immunoblotting , Captura por Microdisección con Láser , Degeneración Macular/tratamiento farmacológico , Ratones , PPAR gamma/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem
9.
Am J Physiol Renal Physiol ; 311(6): F1198-F1210, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681558

RESUMEN

Activation of the thick ascending limb (TAL) Na+-K+-2Cl- cotransporter (NKCC2) by the antidiuretic hormone arginine vasopressin (AVP) is an essential mechanism of renal urine concentration and contributes to extracellular fluid and electrolyte homeostasis. AVP effects in the kidney are modulated by locally and/or by systemically produced epoxyeicosatrienoic acid derivates (EET). The relation between AVP and EET metabolism has not been determined. Here, we show that chronic treatment of AVP-deficient Brattleboro rats with the AVP V2 receptor analog desmopressin (dDAVP; 5 ng/h, 3 days) significantly lowered renal EET levels (-56 ± 3% for 5,6-EET, -50 ± 3.4% for 11,12-EET, and -60 ± 3.7% for 14,15-EET). The abundance of the principal EET-degrading enzyme soluble epoxide hydrolase (sEH) was increased at the mRNA (+160 ± 37%) and protein levels (+120 ± 26%). Immunohistochemistry revealed dDAVP-mediated induction of sEH in connecting tubules and cortical and medullary collecting ducts, suggesting a role of these segments in the regulation of local interstitial EET signals. Incubation of murine kidney cell suspensions with 1 µM 14,15-EET for 30 min reduced phosphorylation of NKCC2 at the AVP-sensitive threonine residues T96 and T101 (-66 ± 5%; P < 0.05), while 14,15-DHET had no effect. Concomitantly, isolated perfused cortical thick ascending limb pretreated with 14,15-EET showed a 30% lower transport current under high and a 70% lower transport current under low symmetric chloride concentrations. In summary, we have shown that activation of AVP signaling stimulates renal sEH biosynthesis and enzyme activity. The resulting reduction of EET tissue levels may be instrumental for increased NKCC2 transport activity during AVP-induced antidiuresis.


Asunto(s)
Desamino Arginina Vasopresina/farmacología , Eicosanoides/metabolismo , Epóxido Hidrolasas/metabolismo , Riñón/efectos de los fármacos , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Riñón/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Ratas , Ratas Brattleboro
10.
J Lipid Res ; 56(11): 2110-23, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26399467

RESUMEN

Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Eicosanoides/fisiología , Motilidad Gastrointestinal , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ingestión de Alimentos , Faringe/fisiología
11.
Biochem J ; 464(1): 61-71, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25138176

RESUMEN

A specific behavioural response of Caenorhabditis elegans, the rapid increase of locomotion in response to anoxia/reoxygenation called the O2-ON response, has been used to model key aspects of ischaemia/reperfusion injury. A genetic suppressor screen demonstrated a direct causal role of CYP (cytochrome P450)-13A12 in this response and suggested that CYP-eicosanoids, which in mammals influence the contractility of cardiomyocytes and vascular smooth muscle cells, might function in C. elegans as specific regulators of the body muscle cell activity. In the present study we show that co-expression of CYP-13A12 with the NADPH-CYP-reductase EMB-8 in insect cells resulted in the reconstitution of an active microsomal mono-oxygenase system that metabolized EPA (eicosapentaenoic acid) and also AA (arachidonic acid) to specific sets of regioisomeric epoxy and hydroxy derivatives. The main products included 17,18-EEQ (17,18-epoxyeicosatetraenoic acid) from EPA and 14,15-EET (14,15-epoxyeicosatrienoic acid) from AA. Locomotion assays showed that the defective O2-ON response of C20-PUFA (polyunsaturated fatty acid)-deficient, Δ-12 and Δ-6 fatty acid desaturase mutants (fat-2 and fat-3 respectively) can be restored by feeding the nematodes AA or EPA, but not ETYA (eicosatetraynoic acid), a non-metabolizable AA analogue. Short-term incubation with 17,18-EEQ was sufficient to rescue the impaired locomotion of the fat-3 strain. The endogenous level of free 17,18-EEQ declined during anoxia and was rapidly restored in response to reoxygenation. On the basis of these results, we suggest that CYP-dependent eicosanoids such as 17,18-EEQ function as signalling molecules in the regulation of the O2-ON response in C. elegans. Remarkably, the exogenously administered 17,18-EEQ increased the locomotion activity under normoxic conditions and was effective not only with C20-PUFA-deficient mutants, but to a lesser extent also with wild-type worms.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Sistema Enzimático del Citocromo P-450/biosíntesis , Ácidos Grasos Insaturados/biosíntesis , Actividad Motora/fisiología , Animales , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología , Caenorhabditis elegans , Actividad Motora/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
12.
Adv Exp Med Biol ; 851: 151-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26002735

RESUMEN

Various members of the cytochrome P450 (CYP) superfamily have the capacity of metabolizing omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFAs). In most mammalian tissues, CYP2C and CYP2J enzymes are the major PUFA epoxygenases, whereas CYP4A and CYP4F subfamily members function as PUFA hydroxylases. The individual CYP enzymes differ in their substrate specificities as well as regio- and stereoselectivities and thus produce distinct sets of epoxy and/or hydroxy metabolites, collectively termed CYP eicosanoids. Nutrition has a major impact on the endogenous CYP-eicosanoid profile. "Western diets" rich in n-6 PUFAs result in a predominance of arachidonic acid-derived metabolites, whereas marine foodstuffs rich in n-3 PUFAs shift the profile to eicosapentaenoic and docosahexaenoic acid-derived metabolites. In general, CYP eicosanoids are formed as second messengers of numerous hormones, growth factors and cytokines regulating cardiovascular and renal function, and a variety of other physiological processes. Imbalances in the formation of individual CYP eicosanoids are linked to the development of hypertension, myocardial infarction, maladaptive cardiac hypertrophy, acute kidney injury, stroke and inflammatory disorders. The underlying mechanisms are increasingly understood and may provide novel targets for the prevention and treatment of these disease states. Suitable pharmacological agents are under development and first proofs of concept have been obtained in animal models.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Sistemas de Mensajero Secundario , Animales , Enfermedades Cardiovasculares/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos
13.
J Lipid Res ; 55(6): 1150-64, 2014 06.
Artículo en Inglés | MEDLINE | ID: mdl-24634501

RESUMEN

Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase (LOX)-, and CYP-dependent pathways. Raising the Omega-3 Index from about four to eight primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived LOX-dependent monohydroxy-metabolites including the precursors of the resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold higher efficiency and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA supplementation.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Suplementos Dietéticos , Ácidos Eicosanoicos/sangre , Ácidos Grasos Omega-3/administración & dosificación , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
J Pharmacol Exp Ther ; 351(3): 688-98, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25316121

RESUMEN

The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for 8 weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in the aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in the aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared with KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Citocromo P-450 CYP1A1/fisiología , Ácidos Grasos Omega-3/administración & dosificación , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo
15.
J Pharmacol Exp Ther ; 350(1): 14-21, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24763066

RESUMEN

Cytochrome P450-derived epoxides of arachidonic acid [i.e., the epoxyeicosatrienoic acids (EETs)] are important lipid signaling molecules involved in the regulation of vascular tone and angiogenesis. Because many actions of 11,12-cis-epoxyeicosatrienoic acid (EET) are dependent on the activation of protein kinase A (PKA), the existence of a cell-surface G(s)-coupled receptor has been postulated. To assess whether the responses of endothelial cells to 11,12-EET are enantiomer specific and linked to a potential G protein-coupled receptor, we assessed 11,12-EET-induced, PKA-dependent translocation of transient receptor potential (TRP) C6 channels, as well as angiogenesis. In primary cultures of human endothelial cells, (±)-11,12-EET led to the rapid (30 seconds) translocation a TRPC6-V5 fusion protein, an effect reproduced by 11(R),12(S)-EET, but not by 11(S),12(R)-EET or (±)-14,15-EET. Similarly, endothelial cell migration and tube formation were stimulated by (±)-11,12-EET and 11(R),12(S)-EET, whereas 11(S),12(R)-EET and 11,12-dihydroxyeicosatrienoic acid were without effect. The effects of (±)-11,12-EET on TRP channel translocation and angiogenesis were sensitive to EET antagonists, and TRP channel trafficking was also prevented by a PKA inhibitor. The small interfering RNA-mediated downregulation of G(s) in endothelial cells had no significant effect on responses stimulated by vascular endothelial growth or a PKA activator but abolished responses to (±)-11,12-EET. The downregulation of G(q)/11 failed to prevent 11,12-EET-induced TRPC6 channel translocation or the formation of capillary-like structures. Taken together, our results suggest that a G(s)-coupled receptor in the endothelial cell membrane responds to 11(R),12(S)-EET and mediates the PKA-dependent translocation and activation of TRPC6 channels, as well as angiogenesis.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Canales Catiónicos TRPC/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inhibidores , Ácido 8,11,14-Eicosatrienoico/farmacología , Inductores de la Angiogénesis/farmacología , Movimiento Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Humanos , Cultivo Primario de Células , ARN Interferente Pequeño/farmacología , Estereoisomerismo , Canal Catiónico TRPC6 , Factor A de Crecimiento Endotelial Vascular/farmacología
16.
Circulation ; 126(25): 2990-9, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23155181

RESUMEN

BACKGROUND: Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis, which are mechanistically important in preeclampsia. METHODS AND RESULTS: We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 control subjects. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. Reverse-transcription polymerase chain reaction confirmed the upregulation, and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acid (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids, were elevated in preeclamptic women compared with controls in the latter two thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine tumor necrosis factor-α enhanced CYP2J2 gene and protein expression. In 2 independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic angiotensin II rat, we observed elevated EET, dihydroxyeicosatrienoic acid, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MsPPOH). Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel activity. CONCLUSIONS: Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Sistema Enzimático del Citocromo P-450/fisiología , Preeclampsia/etiología , Ácido 8,11,14-Eicosatrienoico/sangre , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes , Células Cultivadas , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/genética , Ácidos Grasos Insaturados , Femenino , Humanos , Hidrazinas/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Placenta/irrigación sanguínea , Polimorfismo de Nucleótido Simple , Preeclampsia/sangre , Preeclampsia/enzimología , Embarazo , Ratas , Ratas Sprague-Dawley
17.
Nitric Oxide ; 33: 18-41, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23684565

RESUMEN

We have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), prevents vascular hyporeactivity, hypotension, tachycardia, and inflammation in rats treated with lipopolysaccharide (LPS) and mortality in endotoxemic mice. These changes were attributed to decreased production of inducible nitric oxide (NO) synthase (iNOS)-derived NO, cyclooxygenase (COX)-2-derived vasodilator prostanoids, and proinflammatory mediators associated with increased cyctochrome P450 (CYP) 4A1-derived 20-HETE and CYP2C23-dependent antiinflammatory mediator formation. The aim of this study was to determine whether decreased expression and activity of iNOS, soluble guanylyl cyclase (sGC), protein kinase G (PKG), COX-2, gp91(phox) (NOX2; a superoxide generating NOX enzyme), and peroxynitrite production associated with increased expression of COX-1 and CYP4A1 and 20-HETE formation in renal and cardiovascular tissues of rats contributes to the effect of 5,14-HEDGE to prevent vasodilation, hypotension, tachycardia, and inflammation in response to systemic administration of LPS. Mean arterial pressure fell by 28mmHg and heart rate rose by 47beats/min in LPS (10mg/kg, i.p.)-treated rats. Administration of LPS also increased mRNA and protein expression of iNOS and COX-2 associated with a decrease in COX-1 and CYP4A1 mRNA and protein expression. Increased NOS activity, iNOS-heat shock protein 90 complex formation (an index for iNOS activity), protein expression of phosphorylated vasodilator stimulated phosphoprotein (an index for PKG activity), gp91(phox), p47(phox) (NOXO2; organizer subunit of gp91(phox)), and nitrotyrosine (an index for peroxynitrite production) as well as cGMP (an index for sGC activity), 6-keto-PGF1α (a stable metabolite PGI2) and PGE2 levels (indexes for COX activity), and nitrotyrosine levels by LPS were also associated with decreased CYP hydroxylase activity as measured by 20-HETE formation from arachidonic acid in renal microsomes of LPS-treated rats. These effects of LPS, except iNOS mRNA and COX-1 protein expression, were prevented by 5,14-HEDGE (30mg/kg, s.c.; 1h after LPS). A competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (30mg/kg, s.c.; 1h after LPS) reversed the effects of 5,14-HEDGE, except iNOS and COX-1 mRNA and protein expression as well as expression of CYP4A1 mRNA. These results suggest that increased CYP4A1 expression and 20-HETE formation associated with suppression of iNOS/sGC/PKG pathway, COX-2, and gp91(phox) participate in the protective effect of 5,14-HEDGE against vasodilation, hypotension, tachycardia, and inflammation in the rat model of septic shock.


Asunto(s)
Lipopéptidos/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Sustancias Protectoras/farmacología , Choque Séptico/tratamiento farmacológico , Choque Séptico/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Moléculas de Adhesión Celular/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Guanilato Ciclasa/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacología , Lipopolisacáridos/farmacología , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Especificidad de Órganos , Ácido Peroxinitroso/metabolismo , Fosfoproteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/metabolismo , Choque Séptico/enzimología , Choque Séptico/genética , Guanilil Ciclasa Soluble
18.
Prostaglandins Other Lipid Mediat ; 102-103: 31-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23454652

RESUMEN

We have previously demonstrated that a stable synthetic analog of 20-HETE, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), restores vascular reactivity, blood pressure, and heart rate in endotoxemic rats. The aim of this study was to determine whether decreased renal expression and activity of soluble epoxide hydrolase (sEH), MEK1, ERK1/2, IKKß, IκB-α, and NF-κB as well as systemic and renal proinflammatory cytokine production associated with increased expression and activity of CYP2C23 contributes to the effect of 5,14-HEDGE to prevent hypotension, tachycardia, inflammation, and mortality in response to systemic administration of lipopolysaccharide (LPS). Blood pressure fell by 33 mmHg and heart rate rose by 57 beats/min in LPS (10 mg/kg, i.p.)-treated rats. Administration of LPS also increased mRNA and protein expression of sEH associated with a decrease in CYP2C23 mRNA and protein expression. Increased activity of sEH and p-MEK1, p-ERK1/2, p-IκB-α, NF-κB, and p-NF-κB protein levels as well as TNF-α and IL-8 production by LPS were also associated with a decreased activity of AA epoxygenases. These effects of LPS were prevented by 5,14-HEDGE (30 mg/kg, s.c.; 1 h after LPS). Treatment of endotoxemic mice with 5,14-HEDGE also raised the survival rate of animals from 84% to 98%. A competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, 20-HEDE (30 mg/kg, s.c.; 1 h after LPS) prevented the effects of 5,14-HEDGE on blood pressure, heart rate, expression and/or activity of sEH, CYP2C23, and ERK1/2 as well as TNF-α and IL-8 levels in rats treated with LPS. These results suggest that decreased expression and/or activity of sEH and MEK1/ERK1/2/IKKß/IκB-α/NF-κB pathway as well as proinflammatory cytokine production associated with increased CYP2C23 expression and antiinflammatory mediator formation participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, inflammation, and mortality in the rodent model of septic shock.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Epóxido Hidrolasas/biosíntesis , Ácidos Hidroxieicosatetraenoicos/administración & dosificación , Inflamación/tratamiento farmacológico , Lipopéptidos/administración & dosificación , Choque Séptico/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Citocromo P-450 CYP2J2 , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/síntesis química , Hipotensión/tratamiento farmacológico , Hipotensión/patología , Inflamación/metabolismo , Inflamación/patología , Lipopéptidos/síntesis química , Sistema de Señalización de MAP Quinasas , Ratones , FN-kappa B/metabolismo , Ratas , Choque Séptico/metabolismo , Choque Séptico/patología , Sobrevida
19.
Artículo en Inglés | MEDLINE | ID: mdl-36914111

RESUMEN

17,18-Epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant eicosanoid generated by cytochrome P450 (CYP) enzymes in C. elegans, is a potential signaling molecule in the regulation of pharyngeal pumping activity of this nematode. As a chiral molecule, 17,18-EEQ can exist in two stereoisomers, the 17(R),18(S)- and 17(S),18(R)-EEQ enantiomers. Here we tested the hypothesis that 17,18-EEQ may function as a second messenger of the feeding-promoting neurotransmitter serotonin and stimulates pharyngeal pumping and food uptake in a stereospecific manner. Serotonin treatment of wildtype worms induced a more than twofold increase of free 17,18-EEQ levels. As revealed by chiral lipidomics analysis, this increase was almost exclusively due to an enhanced release of the (R,S)-enantiomer of 17,18-EEQ. In contrast to the wildtype strain, serotonin failed to induce 17,18-EEQ formation as well as to accelerate pharyngeal pumping in mutant strains defective in the serotonin SER-7 receptor. However, the pharyngeal activity of the ser-7 mutant remained fully responsive to exogenous 17,18-EEQ administration. Short term incubations of well-fed and starved wildtype nematodes showed that both racemic 17,18-EEQ and 17(R),18(S)-EEQ were able to increase pharyngeal pumping frequency and the uptake of fluorescence-labeled microspheres, while 17(S),18(R)-EEQ and also 17,18-dihydroxyeicosatetraenoic acid (17,18-DHEQ, the hydrolysis product of 17,18-EEQ) were ineffective. Taken together, these results show that serotonin induces 17,18-EEQ formation in C. elegans via the SER-7 receptor and that both the formation of this epoxyeicosanoid and its subsequent stimulatory effect on pharyngeal activity proceed with high stereospecificity confined to the (R,S)-enantiomer.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Serotonina/farmacología , Proteínas de Caenorhabditis elegans/genética , Eicosanoides , Sistema Enzimático del Citocromo P-450
20.
Clin Transl Sci ; 16(7): 1258-1271, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37177864

RESUMEN

The development of pharmacological therapies for mitochondrial diseases is hampered by the lack of tissue-level and circulating biomarkers reflecting effects of compounds on endothelial and mitochondrial function. This phase 0 study aimed to identify biomarkers differentiating between patients with mitochondrial disease and healthy volunteers (HVs). In this cross-sectional case-control study, eight participants with mitochondrial disease and eight HVs matched on age, sex, and body mass index underwent study assessments consisting of blood collection for evaluation of plasma and serum biomarkers, mitochondrial function in peripheral blood mononuclear cells (PBMCs), and an array of imaging methods for assessment of (micro)circulation. Plasma biomarkers GDF-15, IL-6, NT-proBNP, and cTNI were significantly elevated in patients compared to HVs, as were several clinical chemistry and hematology markers. No differences between groups were found for mitochondrial membrane potential, mitochondrial reactive oxygen production, oxygen consumption rate, or extracellular acidification rate in PBMCs. Imaging revealed significantly higher nicotinamide-adenine-dinucleotide-hydrogen (NADH) content in skin as well as reduced passive leg movement-induced hyperemia in patients. This study confirmed results of earlier studies regarding plasma biomarkers in mitochondrial disease and identified several imaging techniques that could detect functional differences at the tissue level between participants with mitochondrial disease and HVs. However, assays of mitochondrial function in PBMCs did not show differences between participants with mitochondrial disease and HVs, possibly reflecting compensatory mechanisms and heterogeneity in mutational load. In future clinical trials, using a mix of imaging and blood-based biomarkers may be advisable, as well as combining these with an in vivo challenge to disturb homeostasis.


Asunto(s)
Leucocitos Mononucleares , Enfermedades Mitocondriales , Humanos , Leucocitos Mononucleares/metabolismo , Estudios de Casos y Controles , Estudios Transversales , Mitocondrias , Biomarcadores , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda