Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(35): e2400646, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38686673

RESUMEN

The elastic interaction between kinks (and antikinks) within domain walls plays a pivotal role in shaping the domain structure, and their dynamics. In bulk materials, kinks interact as elastic monopoles, dependent on the distance between walls (d-1) and typically characterized by a rigid and straight domain configuration. In this work the evolution of the domain structure is investigated, as the sample size decreases, by the means of in situ heating microscopy techniques on free-standing samples. As the sample size decreases, a significant transformation is observed: domain walls exhibit pronounced curvature, accompanied by an increase in both domain wall and junction density. This transformation is attributed to the pronounced influence of kinks, inducing sample warping, where "dipole-dipole" interactions are dominant (d-2). Moreover, a critical thickness range that delineates a crossover between the monopolar and dipolar regimens is experimentally identified and corroborated by atomic simulations. These findings are relevant for in situ TEM studies and for the development of novel devices based on free-standing ferroic thin films and nanomaterials.

2.
Adv Sci (Weinh) ; 10(29): e2303028, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37607120

RESUMEN

Ferroelectrics, due to their polar nature and reversible switching, can be used to dynamically control surface chemistry for catalysis, chemical switching, and other applications such as water splitting. However, this is a complex phenomenon where ferroelectric domain orientation and switching are intimately linked to surface charges. In this work, the temperature-induced domain behavior of ferroelectric-ferroelastic domains in free-standing BaTiO3 films under different gas environments, including vacuum and oxygen-rich, is studied by in situ scanning transmission electron microscopy (STEM). An automated pathway to statistically disentangle and detect domain structure transformations using deep autoencoders, providing a pathway towards real-time analysis is also established. These results show a clear difference in the temperature at which phase transition occurs and the domain behavior between various environments, with a peculiar domain reconfiguration at low temperatures, from a-c to a-a at ≈60 °C. The vacuum environment exhibits a rich domain structure, while under the oxidizing environment, the domain structure is largely suppressed. The direct visualization provided by in situ gas and heating STEM allows to investigate the influence of external variables such as gas, pressure, and temperature, on oxide surfaces in a dynamic manner, providing invaluable insights into the intricate surface-screening mechanisms in ferroelectrics.

3.
Sci Rep ; 12(1): 14818, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050337

RESUMEN

Ferroic domain dynamics, as a function of external stimuli, can be collectively described as scale-invariant avalanches characterised by a critical exponent that are sensitive to the complexity of the domain microstructure. The understanding and manipulation of these avalanches lies at the heart of developing novel applications such as neuromorphic computing. Here we combine in situ heating optical observations and mean-field analysis to investigate the collective domain behaviour in pure-ferroelastic lanthanum aluminate (LaAlO[Formula: see text]) as a function of aspect ratio, the ratio of sample length to width, where the movement of the domains is predominantly driven by thermal stresses via thermal expansion/contraction during heat cycling. Our observations demonstrate that the aspect ratio induces (1) distinctive domain microstructures at room temperature, (2) a deviation of dynamical behaviour at high temperatures and (3) critical exponent mixing in the higher aspect ratio samples that accompanies this behaviour. While the critical exponents of each aspect ratio fall within mean-field predicted values, we highlight the effect that the aspect ratio has in inducing exponent mixing. Hence, furthering our understanding towards tuning and controlling avalanches which is crucial for fundamental and applied research.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda