Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Annu Rev Immunol ; 42(1): 401-425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38360544

RESUMEN

IgE-mediated food allergy (IgE-FA) occurs due to a breakdown in immune tolerance that leads to a detrimental type 2 helper T cell (TH2) adaptive immune response. While the processes governing this loss of tolerance are incompletely understood, several host-related and environmental factors impacting the risk of IgE-FA development have been identified. Mounting evidence supports the role of an impaired epithelial barrier in the development of IgE-FA, with exposure of allergens through damaged skin and gut epithelium leading to the aberrant production of alarmins and activation of TH2-type allergic inflammation. The treatment of IgE-FA has historically been avoidance with acute management of allergic reactions, but advances in allergen-specific immunotherapy and the development of biologics and other novel therapeutics are rapidly changing the landscape of food allergy treatment. Here, we discuss the pathogenesis and immunobiology of IgE-FA in addition to its diagnosis, prognosis, and treatment.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Inmunoglobulina E , Humanos , Hipersensibilidad a los Alimentos/terapia , Hipersensibilidad a los Alimentos/inmunología , Animales , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Alérgenos/inmunología , Desensibilización Inmunológica/métodos , Células Th2/inmunología , Tolerancia Inmunológica , Susceptibilidad a Enfermedades
3.
Allergy ; 79(2): 445-455, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37916710

RESUMEN

BACKGROUND: Conventional basophil activation tests (BATs) measure basophil activation by the increased expression of CD63. Previously, fluorophore-labeled avidin, a positively-charged molecule, was found to bind to activated basophils, which tend to expose negatively charged granule constituents during degranulation. This study further compares avidin versus CD63 as basophil activation biomarkers in classifying peanut allergy. METHODS: Seventy subjects with either a peanut allergy (N = 47), a food allergy other than peanut (N = 6), or no food allergy (N = 17) were evaluated. We conducted BATs in response to seven peanut extract (PE) concentrations (0.01-10,000 ng/mL) and four control conditions (no stimulant, anti-IgE, fMLP (N-formylmethionine-leucyl-phenylalanine), and anti-FcεRI). We measured avidin binding and CD63 expression on basophils with flow cytometry. We evaluated logistic regression and XGBoost models for peanut allergy classification and feature identification. RESULTS: Avidin binding was correlated with CD63 expression. Both markers discriminated between subjects with and without a peanut allergy. Although small by percentage, an avidin+ /CD63- cell subset was found in all allergic subjects tested, indicating that the combination of avidin and CD63 could allow a more comprehensive identification of activated basophils. Indeed, we obtained the best classification accuracy (97.8% sensitivity, 96.7% specificity) by combining avidin and CD63 across seven PE doses. Similar accuracy was obtained by combining PE dose of 10,000 ng/mL for avidin and PE doses of 10 and 100 ng/mL for CD63. CONCLUSIONS: Avidin and CD63 are reliable BAT activation markers associated with degranulation. Their combination enhances the identification of activated basophils and improves the classification accuracy of peanut allergy.


Asunto(s)
Prueba de Desgranulación de los Basófilos , Hipersensibilidad al Cacahuete , Humanos , Hipersensibilidad al Cacahuete/diagnóstico , Hipersensibilidad al Cacahuete/metabolismo , Avidina/metabolismo , Inmunoglobulina E/metabolismo , Basófilos/metabolismo , Citometría de Flujo , Arachis , Tetraspanina 30/metabolismo
4.
Ann Allergy Asthma Immunol ; 131(6): 694-702, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37689112

RESUMEN

Increased use of fossil fuels has led to global warming with concomitant increases in the severity and frequency of extreme weather events such as wildfires and sand and dust storms. These changes have led to increases in air pollutants such as particulate matter and greenhouse gases. Global warming is also associated with increases in pollen season length and pollen concentration. Particulate matter, greenhouse gases, and pollen synergistically increase the incidence and severity of allergic diseases. Other indirect factors such as droughts, flooding, thunderstorms, heat waves, water pollution, human migration, deforestation, loss of green space, and decreasing biodiversity (including microbial diversity) also affect the incidence and severity of allergic disease. Global warming and extreme weather events are expected to increase in the coming decades, and further increases in allergic diseases are expected, exacerbating the already high health care burden associated with these diseases. There is an urgent need to mitigate and adapt to the effects of climate change to improve human health. Human health and planetary health are connected and the concept of One Health, which is an integrated, unifying approach to balance and optimize the health of people, animals, and the environment needs to be emphasized. Clinicians are trusted members of the community, and they need to take a strong leadership role in educating patients on climate change and its adverse effects on human health. They also need to advocate for policy changes that decrease the use of fossil fuels and increase biodiversity and green space to enable a healthier and more sustainable future.


Asunto(s)
Gases de Efecto Invernadero , Hipersensibilidad , Animales , Humanos , Calentamiento Global , Hipersensibilidad/epidemiología , Hipersensibilidad/etiología , Cambio Climático , Material Particulado/efectos adversos , Combustibles Fósiles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda