RESUMEN
Low exposure to microbial products, respiratory viral infections and air pollution are major risk factors for allergic asthma, yet the mechanistic links between such conditions and host susceptibility to type 2 allergic disorders remain unclear. Through the use of single-cell RNA sequencing, we characterized lung neutrophils in mice exposed to a pro-allergic low dose of lipopolysaccharide (LPS) or a protective high dose of LPS before exposure to house dust mites. Unlike exposure to a high dose of LPS, exposure to a low dose of LPS instructed recruited neutrophils to upregulate their expression of the chemokine receptor CXCR4 and to release neutrophil extracellular traps. Low-dose LPS-induced neutrophils and neutrophil extracellular traps potentiated the uptake of house dust mites by CD11b+Ly-6C+ dendritic cells and type 2 allergic airway inflammation in response to house dust mites. Neutrophil extracellular traps derived from CXCR4hi neutrophils were also needed to mediate allergic asthma triggered by infection with influenza virus or exposure to ozone. Our study indicates that apparently unrelated environmental risk factors can shape recruited lung neutrophils to promote the initiation of allergic asthma.
Asunto(s)
Contaminantes Atmosféricos/inmunología , Alérgenos/inmunología , Asma/inmunología , Trampas Extracelulares/metabolismo , Neutrófilos/inmunología , Animales , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Trampas Extracelulares/inmunología , Femenino , Humanos , Lipopolisacáridos/inmunología , Pulmón/citología , Pulmón/inmunología , Ratones , Neutrófilos/metabolismo , Orthomyxoviridae/inmunología , Ozono/inmunología , Pyroglyphidae/inmunología , Receptores CXCR4/inmunología , Receptores CXCR4/metabolismo , Regulación hacia ArribaRESUMEN
Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.
Asunto(s)
Eje Cerebro-Intestino , Dopamina , Ejercicio Físico , Microbioma Gastrointestinal , Motivación , Carrera , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Dopamina/metabolismo , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/metabolismo , Células Receptoras Sensoriales/metabolismo , Eje Cerebro-Intestino/fisiología , Microbioma Gastrointestinal/fisiología , Ejercicio Físico/fisiología , Ejercicio Físico/psicología , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/psicología , Modelos Animales , Humanos , Estriado Ventral/citología , Estriado Ventral/metabolismo , Carrera/fisiología , Carrera/psicología , Recompensa , IndividualidadRESUMEN
Maternal care, including by non-biological parents, is important for offspring survival1-8. Oxytocin1,2,9-15, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress15. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.
Asunto(s)
Aprendizaje , Conducta Materna/psicología , Madres/psicología , Neuronas/metabolismo , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Abstinencia Sexual/psicología , Enseñanza , Animales , Femenino , Vivienda para Animales , Tamaño de la Camada , Ratones , Comportamiento de Nidificación , Plasticidad NeuronalRESUMEN
We show that the Landsat and Sentinel-2 satellites can detect NO2 plumes from large point sources at 10 to 60 m pixel resolution in their blue and ultrablue bands. We use the resulting NO2 plume imagery to quantify nitrogen oxides (NOx) emission rates for several power plants in Saudi Arabia and the United States, including a 13-y analysis of 132 Landsat plumes from Riyadh power plant 9 from 2009 through 2021. NO2 in the plumes initially increases with distance from the source, likely reflecting recovery from ozone titration. The fine pixel resolutions of Landsat and Sentinel-2 enable separation of individual point sources and stacks, including in urban background, and the long records enable examination of multidecadal emission trends. Our inferred NOx emission rates are consistent with previous estimates to within a precision of about 30%. Sources down to ~500 kg h-1 can be detected over bright, quasi-homogeneous surfaces. The 2009 to 2021 data for Riyadh power plant 9 show a strong summer peak in emissions, consistent with increased power demand for air conditioning, and a marginal slow decrease following the introduction of Saudi Arabia's Ambient Air Standard 2012.
RESUMEN
The most frequently mutated oncogene in cancer is KRAS, which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region1. Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins-each capable of transforming cells-are encoded when KRAS is activated by mutation2. No functional distinctions among the splice variants have so far been established. Oncogenic KRAS alters the metabolism of tumour cells3 in several ways, including increased glucose uptake and glycolysis even in the presence of abundant oxygen4 (the Warburg effect). Whereas these metabolic effects of oncogenic KRAS have been explained by transcriptional upregulation of glucose transporters and glycolytic enzymes3-5, it is not known whether there is direct regulation of metabolic enzymes. Here we report a direct, GTP-dependent interaction between KRAS4A and hexokinase 1 (HK1) that alters the activity of the kinase, and thereby establish that HK1 is an effector of KRAS4A. This interaction is unique to KRAS4A because the palmitoylation-depalmitoylation cycle of this RAS isoform enables colocalization with HK1 on the outer mitochondrial membrane. The expression of KRAS4A in cancer may drive unique metabolic vulnerabilities that can be exploited therapeutically.
Asunto(s)
Hexoquinasa/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Regulación Alostérica , Animales , Línea Celular Tumoral , Activación Enzimática , Glucólisis , Guanosina Trifosfato/metabolismo , Hexoquinasa/química , Humanos , Técnicas In Vitro , Isoenzimas/metabolismo , Lipoilación , Masculino , Ratones , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Neoplasias/enzimología , Neoplasias/metabolismo , Unión Proteica , Transporte de ProteínasRESUMEN
BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes on chromosome 17q12-q21 are associated with childhood-onset asthma and rhinovirus-induced wheeze. There are few mechanistic data linking chromosome 17q12-q21 to wheezing illness. OBJECTIVE: We investigated whether 17q12-q21 risk alleles were associated with impaired interferon responses to rhinovirus. METHODS: In a population-based birth cohort of European ancestry, we stimulated peripheral blood mononuclear cells with rhinovirus A1 (RV-A1) and rhinovirus A16 (RV-A16) and measured IFN and IFN-induced C-X-C motif chemokine ligand 10 (aka IP10) responses in supernatants. We investigated associations between virus-induced cytokines and 6 SNPs in 17q12-q21. Bayesian profile regression was applied to identify clusters of individuals with different immune response profiles and genetic variants. RESULTS: Five SNPs (in high linkage disequilibrium, r2 ≥ 0.8) were significantly associated with RV-A1-induced IFN-ß (rs9303277, P = .010; rs11557467, P = .012; rs2290400, P = .006; rs7216389, P = .008; rs8079416, P = .005). A reduction in RV-A1-induced IFN-ß was observed among individuals with asthma risk alleles. There were no significant associations for RV-A1-induced IFN-α or CXCL10, or for any RV-A16-induced IFN/CXCL10. Bayesian profile regression analysis identified 3 clusters that differed in IFN-ß induction to RV-A1 (low, medium, high). The typical genetic profile of the cluster associated with low RV-A1-induced IFN-ß responses was characterized by a very high probability of being homozygous for the asthma risk allele for all SNPs. Children with persistent wheeze were almost 3 times more likely to be in clusters with reduced/average RV-A1-induced IFN-ß responses than in the high immune response cluster. CONCLUSIONS: Polymorphisms on chromosome 17q12-q21 are associated with rhinovirus-induced IFN-ß, suggesting a novel mechanism-impaired IFN-ß induction-links 17q12-q21 risk alleles with asthma/wheeze.
Asunto(s)
Cromosomas Humanos Par 17 , Polimorfismo de Nucleótido Simple , Rhinovirus , Humanos , Cromosomas Humanos Par 17/genética , Masculino , Femenino , Asma/genética , Asma/inmunología , Interferones , Niño , Ruidos Respiratorios/genética , Ruidos Respiratorios/inmunología , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/genética , Predisposición Genética a la Enfermedad , Quimiocina CXCL10/genética , Leucocitos Mononucleares/inmunología , PreescolarRESUMEN
BACKGROUND: Severe refractory, neutrophilic asthma remains an unsolved clinical problem. STING agonists induce a neutrophilic response in the airways, suggesting that STING activation may contribute to the triggering of neutrophilic exacerbations. We aim to determine whether STING-induced neutrophilic lung inflammation mimics severe asthma. METHODS: We developed new models of neutrophilic lung inflammation induced by house dust mite (HDM) plus STING agonists diamidobenzimidazole (diABZI) or cGAMP in wild-type, and conditional-STING-deficient mice. We measured DNA damage, cell death, NETs, cGAS/STING pathway activation by immunoblots, N1/N2 balance by flow cytometry, lung function by plethysmography, and Th1/Th2 cytokines by multiplex. We evaluated diABZI effects on human airway epithelial cells from healthy or patients with asthma, and validated the results by transcriptomic analyses of rhinovirus infected healthy controls vs patients with asthma. RESULTS: DiABZI administration during HDM challenge increased airway hyperresponsiveness, neutrophil recruitment with prominent NOS2+ARG1- type 1 neutrophils, protein extravasation, cell death by PANoptosis, NETs formation, extracellular dsDNA release, DNA sensors activation, IFNγ, IL-6 and CXCL10 release. Functionally, STING agonists exacerbated airway hyperresponsiveness. DiABZI caused DNA and epithelial barrier damage, STING pathway activation in human airway epithelial cells exposed to HDM, in line with DNA-sensing and PANoptosis pathways upregulation and tight-junction downregulation induced by rhinovirus challenge in patients with asthma. CONCLUSIONS: Our study identifies that triggering STING in the context of asthma induces cell death by PANoptosis, fueling the flame of inflammation through a mixed Th1/Th2 immune response recapitulating the features of severe asthma with a prognostic signature of type 1 neutrophils.
RESUMEN
All organisms need to balance processes that consume energy against those that produce energy. With an increase in biological complexity over evolutionary time, regulation of this balance has become much more complex, resulting in specialization of metabolic tasks between organelles, cells, organs and, in the case of eusocial organisms, between the individuals that comprise the 'superorganism'. Exemplifying this, nurse honey bees maintain high abdominal lipids, while foragers have very low lipid stores, likely contributing to efficient performance of their social role, and thus to colony fitness. The proximate mechanisms responsible for these metabolic differences remain poorly understood. Here, we investigated the effects of age, worker class and dietary macronutrients on the abdominal activity of fatty acid synthase (FAS), the enzyme responsible for de novo synthesis of fatty acids, as well as the effects of age on lipase activity, enzymes responsible for the breakdown of stored lipids. We found that FAS but not lipase activity declines as bees age past peak nursing age. Feeding both nurses and foragers carbohydrates increased FAS activity compared with starved bees, but, whether fed or starved, nurses had much higher FAS activity than similarly treated foragers, implicating reduced lipid synthesis as one component of foragers' low lipid stores. Finally, we used artificial diets with different amounts of protein and fat to precociously induce low, forager-like FAS activity levels in nurse-age bees deprived of protein. We speculate that reduced protein appetite and consumption during the nurse-forager transition is responsible for suppressed lipid synthesis in foragers.
Asunto(s)
Proteínas en la Dieta , Cuerpo Adiposo , Ácido Graso Sintasas , Abejas/fisiología , Abejas/metabolismo , Animales , Proteínas en la Dieta/metabolismo , Ácido Graso Sintasas/metabolismo , Cuerpo Adiposo/metabolismo , Envejecimiento , Lipasa/metabolismo , Lipogénesis , Conducta SocialRESUMEN
OBJECTIVES: To compare Uromonitor® (U-Monitor Lda, Porto, Portugal), a multitarget DNA assay that detects mutated proto-oncogenes (telomerase reverse transcriptase [TERT], fibroblast growth factor receptor 3 [FGFR-3], Kirsten rat sarcoma viral oncogene homologue [KRAS]), with urine cytology in the urine-based diagnosis of urothelial carcinoma of the bladder (UCB) within a multicentre real-world setting. PATIENTS AND METHODS: This multicentre, prospective, double-blind study was conducted across four German urological centres from 2019 to 2024. We evaluated the diagnostic performance of Uromonitor compared to urine cytology in a cohort of patients with UCB and in healthy controls within a real-world setting. Sensitivity, specificity, positive-predictive value (PPV), negative-predictive value (NPV), and accuracy of the tests were measured, in addition to multivariate analyses to assess the ability of individual proto-oncogene mutations in detecting UCB. The biometric sample size was designed to achieve a 10% difference in sensitivity. RESULTS: Patients with UCB comprised 63.7% (339/532) of the study group. Uromonitor showed a sensitivity, specificity, PPV, NPV, accuracy, and an area-under-the-curve of 49.3%, 93.3%, 92.8%, 51.1%, 65.2%, and 0.713%, respectively. These metrics did not demonstrate statistical superiority over urine cytology in terms of sensitivity (44.6%; P = 0.316). Moreover, the comparison of additional test parameters, as well as the comparison within various sensitivity analyses, yielded no significant disparity between the two urinary tests. Multivariate logistic regression underscored the significant predictive value of a positive Uromonitor for detecting UCB (odds ratio [OR] 9.03; P < 0.001). Furthermore, mutations in TERT and FGFR-3 were independently associated with high odds of UCB detection (OR 13.30 and 7.04, respectively), while KRAS mutations did not exhibit predictive capability. CONCLUSION: Despite its innovative approach, Uromonitor fell short of confirming the superior results anticipated from previous studies in this real-world setting. The search for an optimal urine-based biomarker for detecting and monitoring UCB remains ongoing. Results from this study highlight the complexity of developing non-invasive diagnostic tools and emphasise the importance of continued research efforts to refine these technologies.
RESUMEN
PURPOSE: Management of a failed kidney allograft, and the question whether it should be removed is a challenging task for clinicians. The reported risks for transplant nephrectomy (TN) vary, and there is no clear recommendation on indications or surgical approach that should be used. This study gives an overview of indications, compares surgical techniques, and identifies risk factors for higher morbidity. METHODS: Retrospective analysis was conducted on all transplant nephrectomies performed between 2005 and 2020 at Charité Hospital Berlin, Department of Urology. Patient demographics, laboratory parameters, graft survival data, indication for TN, and surgical complications were extracted from medical reports. RESULTS: A total of 195 TN were performed, with graft intolerance syndrome being the most common indication in 52 patients (26.7%), acute rejection in 36 (18.5%), acute infection in 30 (15.4%), and other reasons to stop immunosuppression in 26 patients (13.3%). Rare indications were vascular complications in 16 (8.2%) and malignancies in the allograft in six (3.1%) cases. Extracapsular surgical approach was significantly more often used in cases of vascular complications and earlier allograft removal, but there was no difference in complication rates between extra- and intracapsular approach. Acute infection was identified as an independent risk factor for a complication grade IIIb or higher according to Clavien-Dindo classification, with a HR of 12.3 (CI 2.2-67.7; p = 0.004). CONCLUSION: Transplant nephrectomy should only be performed when there is a good indication, and non-elective surgery should be avoided, when possible, as it increases morbidity.
Asunto(s)
Riñón , Nefrectomía , Humanos , Estudios Retrospectivos , Nefrectomía/efectos adversos , Trasplante Homólogo , Supervivencia de InjertoRESUMEN
Synthetic biology encompasses many kinds of ideas and techniques with the common theme of creating something novel. The industrially relevant microorganism, Ralstonia eutropha (also known as Cupriavidus necator), has long been a subject of metabolic engineering efforts to either enhance a product it naturally makes (polyhydroxyalkanoate) or produce novel bioproducts (e.g., biofuels and other small molecule compounds). Given the metabolic versatility of R. eutropha and the existence of multiple molecular genetic tools and techniques for the organism, development of a synthetic biology toolkit is underway. This toolkit will allow for novel, user-friendly design that can impart new capabilities to R. eutropha strains to be used for novel application. This article reviews the different synthetic biology techniques currently available for modifying and enhancing bioproduction in R. eutropha. KEY POINTS: ⢠R. eutropha (C. necator) is a versatile organism that has been examined for many applications. ⢠Synthetic biology is being used to design more powerful strains for bioproduction. ⢠A diverse synthetic biology toolkit is being developed to enhance R. eutropha's capabilities.
Asunto(s)
Cupriavidus necator , Ingeniería Metabólica , Biología Sintética , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Biología Sintética/métodos , Ingeniería Metabólica/métodos , Polihidroxialcanoatos/metabolismo , Polihidroxialcanoatos/biosíntesis , BiocombustiblesRESUMEN
The concurrent control group is the most important reference for the interpretation of toxicity studies. However, pooled information on control animals from independent studies, i.e., historical control data (HCD), is also used for the interpretation of results. Currently, an overview on actual HCD use in regulatory toxicology is lacking. Therefore, we evaluated the HCD use of the Joint FAO/WHO Meeting on Pesticide Residues from 2004 to 2021 and compared it with recommendations in regulatory guidelines and in the literature. We found that HCD was used routinely and exclusively to avoid potential false positive decisions regarding the treatment-relatedness of effects, mostly using the HCD range, i.e., the most extreme values, as a benchmark. HCD were not used to avoid potential false negative decisions or for quality control of the index study. The central assumption of the HCD use, namely that the HCD and control group of the index study follow the same underlying distribution because they are samples of the same data generation process, was not investigated, although numerous factors potentially contribute to effect variation between the different control groups pooled in the HCD. We recommend that the existing guidelines be revised to improve the robustness and transparency of toxicological assessments.
RESUMEN
BACKGROUND: Microbiota are recognized to play a major role in regulation of immunity through release of immunomodulatory metabolites such as short-chain fatty acids (SCFAs). Rhinoviruses (RVs) induce upper respiratory tract illnesses and precipitate exacerbations of asthma and chronic obstructive pulmonary disease through poorly understood mechanisms. Local interactions between SCFAs and antiviral immune responses in the respiratory tract have not been previously investigated. OBJECTIVE: We sought to investigate whether pulmonary metabolite manipulation through lung-delivered administration of SCFAs can modulate antiviral immunity to RV infection. METHODS: We studied the effects of intranasal administration of the SCFAs acetate, butyrate, and propionate on basal expression of antiviral signatures, and of acetate in a mouse model of RV infection and in RV-infected lung epithelial cell lines. We additionally assessed the effects of acetate, butyrate, and propionate on RV infection in differentiated human primary bronchial epithelial cells. RESULTS: Intranasal acetate administration induced basal upregulation of IFN-ß, an effect not observed with other SCFAs. Butyrate induced RIG-I expression. Intranasal acetate treatment of mice increased interferon-stimulated gene and IFN-λ expression during RV infection and reduced lung virus loads at 8 hours postinfection. Acetate ameliorated virus-induced proinflammatory responses with attenuated pulmonary mucin and IL-6 expression observed at day 4 and 6 postinfection. This interferon-enhancing effect of acetate was confirmed in human bronchial and alveolar epithelial cell lines. In differentiated primary bronchial epithelial cells, butyrate treatment better modulated IFN-ß and IFN-λ gene expression during RV infection. CONCLUSIONS: SCFAs augment antiviral immunity and reduce virus load and proinflammatory responses during RV infection.
Asunto(s)
Infecciones por Enterovirus , Infecciones por Picornaviridae , Humanos , Ratones , Animales , Antivirales/uso terapéutico , Rhinovirus , Propionatos/farmacología , Propionatos/uso terapéutico , Interferones , Bronquios , Células Epiteliales , Acetatos/farmacología , Acetatos/uso terapéutico , Butiratos/farmacología , Butiratos/uso terapéuticoRESUMEN
Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.
Asunto(s)
Materiales Biocompatibles , Biología Sintética , PolímerosRESUMEN
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5'-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1-90.1 g L-1 were observed together with an overproduction of ApMTAP in a 1.9%-3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg-1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.
RESUMEN
An efficient monitoring and control strategy is the basis for a reliable production process. Conventional optical density (OD) measurements involve superpositions of light absorption and scattering, and the results are only given in arbitrary units. In contrast, photon density wave (PDW) spectroscopy is a dilution-free method that allows independent quantification of both effects with defined units. For the first time, PDW spectroscopy was evaluated as a novel optical process analytical technology tool for real-time monitoring of biomass formation in Escherichia coli high-cell-density fed-batch cultivations. Inline PDW measurements were compared to a commercially available inline turbidity probe and with offline measurements of OD and cell dry weight (CDW). An accurate correlation of the reduced PDW scattering coefficient µs ' with CDW was observed in the range of 5-69 g L-1 (R2 = 0.98). The growth rates calculated based on µs ' were comparable to the rates determined with all reference methods. Furthermore, quantification of the reduced PDW scattering coefficient µs ' as a function of the absorption coefficient µa allowed direct detection of unintended process trends caused by overfeeding and subsequent acetate accumulation. Inline PDW spectroscopy can contribute to more robust bioprocess monitoring and consequently improved process performance.
Asunto(s)
Reactores Biológicos , Escherichia coli , Biomasa , Análisis Espectral , Fenómenos QuímicosRESUMEN
Geobacillus sp. ID17 is a gram-positive thermophilic bacterium isolated from Deception Island, Antarctica, which has shown to exhibit remarkable laccase activity in crude extract at high temperatures. A bioinformatic search using local databases led to the identification of three putative multicopper oxidase sequences in the genome of this microorganism. Sequence analysis revealed that one of those sequences contains the four-essential copper-binding sites present in other well characterized laccases. The gene encoding this sequence was cloned and overexpressed in Escherichia coli, partially purified and preliminary biochemically characterized. The resulting recombinant enzyme was recovered in active and soluble form, exhibiting optimum copper-dependent laccase activity at 55 °C, pH 6.5 with syringaldazine substrate, retaining over 60% of its activity after 1 h at 55 and 60 °C. In addition, this thermophilic enzyme is not affected by common inhibitors SDS, NaCl and L-cysteine. Furthermore, biodecolorization assays revealed that this laccase is capable of degrading 60% of malachite green, 54% of Congo red, and 52% of Remazol Brilliant Blue R, after 6 h at 55 °C with aid of ABTS as redox mediator. The observed properties of this enzyme and the relatively straightforward overexpression and partial purification of it could be of great interest for future biotechnology applications.
Asunto(s)
Geobacillus , Lacasa , Lacasa/química , Regiones Antárticas , Cobre/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Rojo Congo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , TemperaturaRESUMEN
The addition of diarylmethanes or methylarenes via activation of benzylic C(sp3)-H bonds to N-aryl imines proceeds under catalysis by alkali hexamethyldisilazide (HMDS) base to give N-(1,2,2-triarylethyl)anilines or N-(1,2-diarylethyl)anilines, respectively. In the presence of 10 mol % of LiHMDS at room temperature, the diarylmethane addition equilibrates within 20-30 s and is driven to near completion by cooling the reaction mixture to -25 °C, providing N-(1,2,2-triarylethyl)aniline in a >90% yield.
RESUMEN
Since natural resources for the bioproduction of commodity chemicals are scarce, waste animal fats (WAF) are an interesting alternative biogenic residual feedstock. They appear as by-product from meat production, but several challenges are related to their application: first, the high melting points (up to 60 °C); and second, the insolubility in the polar water phase of cultivations. This leads to film and clump formation in shake flasks and microwell plates, which inhibits microbial consumption. In this study, different flask and well designs were investigated to identify the most suitable experimental set-up and further to create an appropriate workflow to achieve the required reproducibility of growth and product synthesis. The dissolved oxygen concentration was measured in-line throughout experiments. It became obvious that the gas mass transfer differed strongly among the shake flask design variants in cultivations with the polyhydroxyalkanoate (PHA) accumulating organism Ralstonia eutropha. A high reproducibility was achieved for certain flask or well plate design variants together with tailored cultivation conditions. Best results were achieved with bottom baffled glass and bottom baffled single-use shake flasks with flat membranes, namely, >6 g L-1 of cell dry weight (CDW) with >80 wt% polyhydroxybutyrate (PHB) from 1 wt% WAF. Improved pre-emulsification conditions for round microwell plates resulted in a production of 14 g L-1 CDW with a PHA content of 70 wt% PHB from 3 wt% WAF. The proposed workflow allows the rapid examination of fat material as feedstock, in the microwell plate and shake flask scale, also beyond PHA production. KEY POINTS: ⢠Evaluation of shake flask designs for cultivating with hydrophobic raw materials ⢠Development of a workflow for microwell plate cultivations with hydrophobic raw materials ⢠Production of polyhydroxyalkanoate in small scale experiments from waste animal fat.
Asunto(s)
Polihidroxialcanoatos , Animales , Reproducibilidad de los Resultados , Flujo de Trabajo , Reactores BiológicosRESUMEN
Craving for high-calorie foods predicts consumption of high-calorie foods thereby contributing to unhealthy eating habits and, potentially in the long term, to the development of overweight, obesity, and eating disorder pathology. Thus, effective interventions tackling craving for unhealthy foods and motivating healthy eating behavior are needed. This initial study tested if an experimental mental imagery procedure could induce craving for healthy foods and increase the motivation to eat healthily. Participants (N = 82) were randomized to either a healthy craving mental imagery condition or to a neutral mental imagery control condition. Craving for healthy foods and motivation to eat healthily was assessed before and after the experimental manipulation via self-report. A (disguised) food choice for healthy versus unhealthy food was added as a behavioural measure at the end of the experiment. Repeated measures of variance analyses with time (pre vs. post experimental manipulation) and condition (healthy craving mental imagery versus neutral mental imagery) yielded significant interactions for healthy craving and motivation to eat healthily: Post-hoc tests showed that craving for healthy foods and motivation to eat healthily increased significantly after the experimental manipulation in the healthy craving mental imagery condition, but not in the neutral mental imagery condition. Results of this initial study suggest that an experimental mental imagery induction of craving for healthy food leads to an increase in healthy craving and motivation to eat healthily. Further experimental research is needed to rule out priming effects, to test the underlying mechanisms of this effect, and evaluate the potential of this mental imagery procedure in a clinical context.