Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nucleic Acids Res ; 50(4): e20, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34850137

RESUMEN

The CRISPR-Cas9 genome editing tool is used to study genomic variants and gene knockouts, and can be combined with transcriptomic analyses to measure the effects of such alterations on gene expression. But how can one be sure that differential gene expression is due to a successful intended edit and not to an off-target event, without performing an often resource-demanding genome-wide sequencing of the edited cell or strain? To address this question we developed CRISPRroots: CRISPR-Cas9-mediated edits with accompanying RNA-seq data assessed for on-target and off-target sites. Our method combines Cas9 and guide RNA binding properties, gene expression changes, and sequence variants between edited and non-edited cells to discover potential off-targets. Applied on seven public datasets, CRISPRroots identified critical off-target candidates that were overlooked in all of the corresponding previous studies. CRISPRroots is available via https://rth.dk/resources/crispr.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes , ARN Guía de Kinetoplastida/genética , RNA-Seq
2.
Nucleic Acids Res ; 50(5): 2452-2463, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188540

RESUMEN

Accelerated evolution of any portion of the genome is of significant interest, potentially signaling positive selection of phenotypic traits and adaptation. Accelerated evolution remains understudied for structured RNAs, despite the fact that an RNA's structure is often key to its function. RNA structures are typically characterized by compensatory (structure-preserving) basepair changes that are unexpected given the underlying sequence variation, i.e., they have evolved through negative selection on structure. We address the question of how fast the primary sequence of an RNA can change through evolution while conserving its structure. Specifically, we consider predicted and known structures in vertebrate genomes. After careful control of false discovery rates, we obtain 13 de novo structures (and three known Rfam structures) that we predict to have rapidly evolving sequences-defined as structures where the primary sequences of human and mouse have diverged at least twice as fast (1.5 times for Rfam) as nearby neutrally evolving sequences. Two of the three known structures function in translation inhibition related to infection and immune response. We conclude that rapid sequence divergence does not preclude RNA structure conservation in vertebrates, although these events are relatively rare.


Asunto(s)
Genoma , ARN , Animales , Evolución Molecular , Ratones , Filogenia , ARN/química , ARN/genética , Vertebrados/genética
3.
Neurobiol Dis ; 178: 105980, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572121

RESUMEN

Alzheimer's disease (AD) is a progressive and irreversible brain disorder, which can occur either sporadically, due to a complex combination of environmental, genetic, and epigenetic factors, or because of rare genetic variants in specific genes (familial AD, or fAD). A key hallmark of AD is the accumulation of amyloid beta (Aß) and Tau hyperphosphorylated tangles in the brain, but the underlying pathomechanisms and interdependencies remain poorly understood. Here, we identify and characterise gene expression changes related to two fAD mutations (A79V and L150P) in the Presenilin-1 (PSEN1) gene. We do this by comparing the transcriptomes of glutamatergic forebrain neurons derived from fAD-mutant human induced pluripotent stem cells (hiPSCs) and their individual isogenic controls generated via precision CRISPR/Cas9 genome editing. Our analysis of Poly(A) RNA-seq data detects 1111 differentially expressed coding and non-coding genes significantly altered in fAD. Functional characterisation and pathway analysis of these genes reveal profound expression changes in constituents of the extracellular matrix, important to maintain the morphology, structural integrity, and plasticity of neurons, and in genes involved in calcium homeostasis and mitochondrial oxidative stress. Furthermore, by analysing total RNA-seq data we reveal that 30 out of 31 differentially expressed circular RNA genes are significantly upregulated in the fAD lines, and that these may contribute to the observed protein-coding gene expression changes. The results presented in this study contribute to a better understanding of the cellular mechanisms impacted in AD neurons, ultimately leading to neuronal damage and death.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Péptidos beta-Amiloides/metabolismo , Transcriptoma , Presenilina-1/genética , Presenilina-1/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Mutación/genética , Neuronas/metabolismo , Precursor de Proteína beta-Amiloide/genética
4.
Brain Behav Immun ; 113: 353-373, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543250

RESUMEN

Frontotemporal dementia (FTD) is a common cause of early-onset dementia, with no current treatment options. FTD linked to chromosome 3 (FTD3) is a rare sub-form of the disease, caused by a point mutation in the Charged Multivesicular Body Protein 2B (CHMP2B). This mutation causes neuronal phenotypes, such as mitochondrial deficiencies, accompanied by metabolic changes and interrupted endosomal-lysosomal fusion. However, the contribution of glial cells to FTD3 pathogenesis has, until recently, been largely unexplored. Glial cells play an important role in most neurodegenerative disorders as drivers and facilitators of neuroinflammation. Microglia are at the center of current investigations as potential pro-inflammatory drivers. While gliosis has been observed in FTD3 patient brains, it has not yet been systematically analyzed. In the light of this, we investigated the role of microglia in FTD3 by implementing human induced pluripotent stem cells (hiPSC) with either a heterozygous or homozygous CHMP2B mutation, introduced into a healthy control hiPSC line via CRISPR-Cas9 precision gene editing. These hiPSC were differentiated into microglia to evaluate the pro-inflammatory profile and metabolic state. Moreover, hiPSC-derived neurons were cultured with conditioned microglia media to investigate disease specific interactions between the two cell populations. Interestingly, we identified two divergent inflammatory microglial phenotypes resulting from the underlying mutations: a severe pro-inflammatory profile in CHMP2B homozygous FTD3 microglia, and an "unresponsive" CHMP2B heterozygous FTD3 microglial state. These findings correlate with our observations of increased phagocytic activity in CHMP2B homozygous, and impaired protein degradation in CHMP2B heterozygous FTD3 microglia. Metabolic mapping confirmed these differences, revealing a metabolic reprogramming of the CHMP2B FTD3 microglia, displayed as a compensatory up-regulation of glutamine metabolism in the CHMP2B homozygous FTD3 microglia. Intriguingly, conditioned CHMP2B homozygous FTD3 microglia media caused neurotoxic effects, which was not evident for the heterozygous microglia. Strikingly, IFN-γ treatment initiated an immune boost of the CHMP2B heterozygous FTD3 microglia, and conditioned microglia media exposure promoted neural outgrowth. Our findings indicate that the microglial profile, activity, and behavior is highly dependent on the status of the CHMP2B mutation. Our results suggest that the heterozygous state of the mutation in FTD3 patients could potentially be exploited in form of immune-boosting intervention strategies to counteract neurodegeneration.


Asunto(s)
Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Células Madre Pluripotentes Inducidas/metabolismo , Microglía/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
5.
Genome Res ; 27(8): 1371-1383, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28487280

RESUMEN

Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions containing CRSs. We find that a substantial fraction of human-mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3' ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.


Asunto(s)
Regulación de la Expresión Génica , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Elementos Reguladores de la Transcripción , Vertebrados/genética , Animales , Secuencia de Bases , Secuencia Conservada , Genoma Humano , Humanos , Ratones , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia , Transcripción Genética
6.
BMC Genomics ; 19(1): 899, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30537930

RESUMEN

BACKGROUND: Comparative genomics approaches have facilitated the discovery of many novel non-coding and structured RNAs (ncRNAs). The increasing availability of related genomes now makes it possible to systematically search for compensatory base changes - and thus for conserved secondary structures - even in genomic regions that are poorly alignable in the primary sequence. The wealth of available transcriptome data can add valuable insight into expression and possible function for new ncRNA candidates. Earlier work identifying ncRNAs in Drosophila melanogaster made use of sequence-based alignments and employed a sliding window approach, inevitably biasing identification toward RNAs encoded in the more conserved parts of the genome. RESULTS: To search for conserved RNA structures (CRSs) that may not be highly conserved in sequence and to assess the expression of CRSs, we conducted a genome-wide structural alignment screen of 27 insect genomes including D. melanogaster and integrated this with an extensive set of tiling array data. The structural alignment screen revealed ∼30,000 novel candidate CRSs at an estimated false discovery rate of less than 10%. With more than one quarter of all individual CRS motifs showing sequence identities below 60%, the predicted CRSs largely complement the findings of sliding window approaches applied previously. While a sixth of the CRSs were ubiquitously expressed, we found that most were expressed in specific developmental stages or cell lines. Notably, most statistically significant enrichment of CRSs were observed in pupae, mainly in exons of untranslated regions, promotors, enhancers, and long ncRNAs. Interestingly, cell lines were found to express a different set of CRSs than were found in vivo. Only a small fraction of intergenic CRSs were co-expressed with the adjacent protein coding genes, which suggests that most intergenic CRSs are independent genetic units. CONCLUSIONS: This study provides a more comprehensive view of the ncRNA transcriptome in fly as well as evidence for differential expression of CRSs during development and in cell lines.


Asunto(s)
Secuencia Conservada , Drosophila melanogaster/genética , ARN/química , Animales , Composición de Base/genética , Secuencia de Bases , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Anotación de Secuencia Molecular , ARN no Traducido/genética , Programas Informáticos
7.
Bioinformatics ; 33(14): 2089-2096, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28334186

RESUMEN

MOTIVATION: Clustering RNA sequences with common secondary structure is an essential step towards studying RNA function. Whereas structural RNA alignment strategies typically identify common structure for orthologous structured RNAs, clustering seeks to group paralogous RNAs based on structural similarities. However, existing approaches for clustering paralogous RNAs, do not take the compensatory base pair changes obtained from structure conservation in orthologous sequences into account. RESULTS: Here, we present RNAscClust , the implementation of a new algorithm to cluster a set of structured RNAs taking their respective structural conservation into account. For a set of multiple structural alignments of RNA sequences, each containing a paralog sequence included in a structural alignment of its orthologs, RNAscClust computes minimum free-energy structures for each sequence using conserved base pairs as prior information for the folding. The paralogs are then clustered using a graph kernel-based strategy, which identifies common structural features. We show that the clustering accuracy clearly benefits from an increasing degree of compensatory base pair changes in the alignments. AVAILABILITY AND IMPLEMENTATION: RNAscClust is available at http://www.bioinf.uni-freiburg.de/Software/RNAscClust . CONTACT: gorodkin@rth.dk or backofen@informatik.uni-freiburg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ARN/química , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Humanos , Conformación de Ácido Nucleico
8.
Nucleic Acids Res ; 43(21): 10168-79, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26476446

RESUMEN

A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus.


Asunto(s)
Genoma Viral , VIH-1/genética , ARN Viral/química , Modelos Genéticos , Conformación de Ácido Nucleico , Programas Informáticos
9.
Nucleic Acids Res ; 43(17): 8135-45, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26283181

RESUMEN

A key aspect of RNA secondary structure prediction is the identification of novel functional elements. This is a challenging task because these elements typically are embedded in longer transcripts where the borders between the element and flanking regions have to be defined. The flanking sequences impact the folding of the functional elements both at the level of computational analyses and when the element is extracted as a transcript for experimental analysis. Here, we analyze how different flanking region lengths impact folding into a constrained structure by computing probabilities of folding for different sizes of flanking regions. Our method, RNAcop (RNA context optimization by probability), is tested on known and de novo predicted structures. In vitro experiments support the computational analysis and suggest that for a number of structures, choosing proper lengths of flanking regions is critical. RNAcop is available as web server and stand-alone software via http://rth.dk/resources/rnacop.


Asunto(s)
Pliegue del ARN , ARN/química , Programas Informáticos , Motivos de Nucleótidos , Análisis de Secuencia de ARN
10.
Nucleic Acids Res ; 41(Web Server issue): W475-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630321

RESUMEN

The function of many non-coding RNA genes and cis-regulatory elements of messenger RNA largely depends on the structure, which is in turn determined by their sequence. Single nucleotide polymorphisms (SNPs) and other mutations may disrupt the RNA structure, interfere with the molecular function and hence cause a phenotypic effect. RNAsnp is an efficient method to predict the effect of SNPs on local RNA secondary structure based on the RNA folding algorithms implemented in the Vienna RNA package. The SNP effects are quantified in terms of empirical P-values, which, for computational efficiency, are derived from extensive pre-computed tables of distributions of substitution effects as a function of gene length and GC content. Here, we present a web service that not only provides an interface for RNAsnp but also features a graphical output representation. In addition, the web server is connected to a local mirror of the UCSC genome browser database that enables the users to select the genomic sequences for analysis and visualize the results directly in the UCSC genome browser. The RNAsnp web server is freely available at: http://rth.dk/resources/rnasnp/.


Asunto(s)
Polimorfismo de Nucleótido Simple , ARN/química , Programas Informáticos , Algoritmos , Gráficos por Computador , Internet , Conformación de Ácido Nucleico , ARN/genética
11.
BMC Genomics ; 15: 459, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24917120

RESUMEN

BACKGROUND: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. RESULTS: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391 structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level. Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci, yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4 ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). CONCLUSIONS: We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the complete annotation is available at http://rth.dk/resources/rnannotator/susscr102/version1.02.


Asunto(s)
Genoma , ARN/metabolismo , Porcinos/genética , Animales , Análisis por Conglomerados , Sitios Genéticos , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN/química , ARN/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Sintenía/genética
12.
Front Immunol ; 15: 1401683, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868778

RESUMEN

Introduction: Chimeric antigen receptor-expressing T cells (CAR T cells) have revolutionized cancer treatment, particularly in B cell malignancies. However, the use of autologous T cells for CAR T therapy presents several limitations, including high costs, variable efficacy, and adverse effects linked to cell phenotype. Methods: To overcome these challenges, we developed a strategy to generate universal and safe anti-CD19 CAR T cells with a defined memory phenotype. Our approach utilizes CRISPR/Cas9 technology to target and eliminate the B2M and TRAC genes, reducing graft-versus-host and host-versus-graft responses. Additionally, we selected less differentiated T cells to improve the stability and persistence of the universal CAR T cells. The safety of this method was assessed using our CRISPRroots transcriptome analysis pipeline, which ensures successful gene knockout and the absence of unintended off-target effects on gene expression or transcriptome sequence. Results: In vitro experiments demonstrated the successful generation of functional universal CAR T cells. These cells exhibited potent lytic activity against tumor cells and a reduced cytokine secretion profile. The CRISPRroots analysis confirmed effective gene knockout and no unintended off-target effects, validating it as a pioneering tool for on/off-target and transcriptome analysis in genome editing experiments. Discussion: Our findings establish a robust pipeline for manufacturing safe, universal CAR T cells with a favorable memory phenotype. This approach has the potential to address the current limitations of autologous CAR T cell therapy, offering a more stable and persistent treatment option with reduced adverse effects. The use of CRISPRroots enhances the reliability and safety of gene editing in the development of CAR T cell therapies. Conclusion: We have developed a potent and reliable method for producing universal CAR T cells with a defined memory phenotype, demonstrating both efficacy and safety in vitro. This innovative approach could significantly improve the therapeutic landscape for patients with B cell malignancies.


Asunto(s)
Antígenos CD19 , Sistemas CRISPR-Cas , Edición Génica , Memoria Inmunológica , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Transcriptoma , Humanos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19/inmunología , Antígenos CD19/genética , Edición Génica/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fenotipo , Línea Celular Tumoral
13.
Hum Mutat ; 34(4): 546-56, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23315997

RESUMEN

Structural characteristics are essential for the functioning of many noncoding RNAs and cis-regulatory elements of mRNAs. SNPs may disrupt these structures, interfere with their molecular function, and hence cause a phenotypic effect. RNA folding algorithms can provide detailed insights into structural effects of SNPs. The global measures employed so far suffer from limited accuracy of folding programs on large RNAs and are computationally too demanding for genome-wide applications. Here, we present a strategy that focuses on the local regions of maximal structural change between mutant and wild-type. These local regions are approximated in a "screening mode" that is intended for genome-wide applications. Furthermore, localized regions are identified as those with maximal discrepancy. The mutation effects are quantified in terms of empirical P values. To this end, the RNAsnp software uses extensive precomputed tables of the distribution of SNP effects as function of length and GC content. RNAsnp thus achieves both a noise reduction and speed-up of several orders of magnitude over shuffling-based approaches. On a data set comprising 501 SNPs associated with human-inherited diseases, we predict 54 to have significant local structural effect in the untranslated region of mRNAs.


Asunto(s)
Polimorfismo de Nucleótido Simple , ARN/química , ARN/genética , Programas Informáticos , Algoritmos , Estudios de Asociación Genética , Humanos , Conformación de Ácido Nucleico , Pliegue del ARN
14.
Bioinformatics ; 28(19): 2523-6, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22826541

RESUMEN

SUMMARY: With the increasing amount of newly discovered non-coding RNAs, the interactions between RNA molecules become an increasingly important aspect for characterizing their functionality. Many computational tools have been developed to predict the formation of duplexes between two RNAs, either based on single sequences or alignments of homologous sequences. Here, we present RILogo, a program to visualize inter- and intramolecular base pairing between two RNA molecules. The input for RILogo is a pair of structure-annotated sequences or alignments. In the latter case, RILogo displays the alignments in the form of sequence logos, including the mutual information of base paired columns. We also introduce two novel mutual information based measures that weigh the covariance information by the evolutionary distances of the aligned sequences. We show that the new measures have an increased accuracy compared with previous mutual information measures. AVAILABILITY AND IMPLEMENTATION: RILogo is freely available as a stand-alone program and is accessible via a web server at http://rth.dk/resources/rilogo. CONTACT: pmenzel@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Emparejamiento Base , ARN no Traducido/genética , Alineación de Secuencia/métodos , Programas Informáticos , Secuencia de Bases , Biología Computacional/métodos , Internet , Anotación de Secuencia Molecular , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN/métodos
15.
Nucleic Acids Res ; 39(Web Server issue): W107-11, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21609960

RESUMEN

The function of non-coding RNA genes largely depends on their secondary structure and the interaction with other molecules. Thus, an accurate prediction of secondary structure and RNA-RNA interaction is essential for the understanding of biological roles and pathways associated with a specific RNA gene. We present web servers to analyze multiple RNA sequences for common RNA structure and for RNA interaction sites. The web servers are based on the recent PET (Probabilistic Evolutionary and Thermodynamic) models PETfold and PETcofold, but add user friendly features ranging from a graphical layer to interactive usage of the predictors. Additionally, the web servers provide direct access to annotated RNA alignments, such as the Rfam 10.0 database and multiple alignments of 16 vertebrate genomes with human. The web servers are freely available at: http://rth.dk/resources/petfold/


Asunto(s)
ARN/química , Programas Informáticos , Regiones no Traducidas 5' , Algoritmos , Humanos , Internet , MicroARNs/química , Conformación de Ácido Nucleico , ARN sin Sentido/química , Alineación de Secuencia , Análisis de Secuencia de ARN , Interfaz Usuario-Computador
16.
Animals (Basel) ; 13(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37048443

RESUMEN

The addition of n-3 polyunsaturated fatty acids (n-3 PUFAs) to the swine diet increases their content in muscle cells, and the additional supplementation of antioxidants promotes their oxidative stability. However, to date, the functionality of these components within muscle tissue is not well understood. Using a published RNA-seq dataset and a selective workflow, the study aimed to find the differences in gene expression and investigate how differentially expressed genes (DEGs) were implicated in the cellular composition and metabolism of muscle tissue of 48 Italian Large White pigs under different dietary conditions. A functional enrichment analysis of DEGs, using Cytoscape, revealed that the diet enriched with extruded linseed and supplemented with vitamin E and selenium promoted a more rapid and massive immune system response because the overall function of muscle tissue was improved, while those enriched with extruded linseed and supplemented with grape skin and oregano extracts promoted the presence and oxidative stability of n-3 PUFAs, increasing the anti-inflammatory potential of the muscular tissue.

17.
Mol Ther Nucleic Acids ; 34: 102066, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38034032

RESUMEN

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.

18.
BMC Genomics ; 13: 214, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22651826

RESUMEN

BACKGROUND: Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. RESULTS: By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3' UTR structures and correlated expression patterns. CONCLUSIONS: Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.


Asunto(s)
Encéfalo/metabolismo , Biología Computacional/métodos , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Anatomía Artística , Animales , Atlas como Asunto , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Variación Genética , Hibridación in Situ , Ratones , Anotación de Secuencia Molecular , Unión Proteica/genética , Sondas ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Termodinámica , Regiones no Traducidas/genética
19.
Bioinformatics ; 27(2): 211-9, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21088024

RESUMEN

MOTIVATION: Predicting RNA-RNA interactions is essential for determining the function of putative non-coding RNAs. Existing methods for the prediction of interactions are all based on single sequences. Since comparative methods have already been useful in RNA structure determination, we assume that conserved RNA-RNA interactions also imply conserved function. Of these, we further assume that a non-negligible amount of the existing RNA-RNA interactions have also acquired compensating base changes throughout evolution. We implement a method, PETcofold, that can take covariance information in intra-molecular and inter-molecular base pairs into account to predict interactions and secondary structures of two multiple alignments of RNA sequences. RESULTS: PETcofold's ability to predict RNA-RNA interactions was evaluated on a carefully curated dataset of 32 bacterial small RNAs and their targets, which was manually extracted from the literature. For evaluation of both RNA-RNA interaction and structure prediction, we were able to extract only a few high-quality examples: one vertebrate small nucleolar RNA and four bacterial small RNAs. For these we show that the prediction can be improved by our comparative approach. Furthermore, PETcofold was evaluated on controlled data with phylogenetically simulated sequences enriched for covariance patterns at the interaction sites. We observed increased performance with increased amounts of covariance. AVAILABILITY: The program PETcofold is available as source code and can be downloaded from http://rth.dk/resources/petcofold.


Asunto(s)
ARN no Traducido/química , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos , Algoritmos , Animales , Emparejamiento Base , Secuencia de Bases , Secuencia Conservada , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Mensajero/química , ARN Nucleolar Pequeño/química , Programas Informáticos , Vertebrados/genética
20.
Gene ; 841: 146756, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35905857

RESUMEN

Non-coding RNAs are key regulatory players in bacteria. Many computationally predicted non-coding RNAs, however, lack functional associations. An example is the Bacillaceae-1 RNA motif, whose Rfam model consists of two hairpin loops. We find the motif conserved in nine of 13 non-pathogenic strains of the genus Bacillus but only in one pathogenic strain. To elucidate functional characteristics, we studied 118 hits of the Rfam model in 11 Bacillus spp. and found two distinct classes based on the ensemble diversity of their RNA secondary structure and the genomic context concerning the ribosomal RNA (rRNA) cluster. Forty hits are associated with the rRNA cluster, of which all 19 hits upstream flanking of 16S rRNA have a reverse complementary structure of low structural diversity. Fifty-two hits have large ensemble diversity, of which 38 are located between two coding genes. For eight hits in Bacillus subtilis, we investigated public expression data under various conditions and observed either the forward or the reverse complementary motif expressed. Five hits are associated with the rRNA cluster. Four of them are located upstream of the 16S rRNA and are not transcriptionally active, but instead, their reverse complements with low structural diversity are expressed together with the rRNA cluster. The three other hits are located between two coding genes in non-conserved genomic loci. Two of them are independently expressed from their surrounding genes and are structurally diverse. In summary, we found that Bacillaceae-1 RNA motifs upstream flanking of ribosomal RNA clusters tend to have one stable structure with the reverse complementary motif expressed in B. subtilis. In contrast, a subgroup of intergenic motifs has the thermodynamic potential for structural switches.


Asunto(s)
Bacillaceae , Bacillus , Bacillaceae/genética , Bacillaceae/metabolismo , Bacillus/genética , Bacillus subtilis/genética , Motivos de Nucleótidos/genética , Filogenia , ARN Ribosómico/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda