Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048708

RESUMEN

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Asunto(s)
COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , COVID-19/genética , Línea Celular , Citocinas , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Lectinas Tipo C/química , Proteínas de la Membrana/química , Modelos Moleculares , Proteínas de Neoplasias/química , Unión Proteica , Conformación Proteica , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad
2.
PLoS Biol ; 20(9): e3001754, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099266

RESUMEN

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Humanos , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales , SARS-CoV-2
3.
Am J Respir Crit Care Med ; 209(12): 1463-1476, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358857

RESUMEN

Rationale: Acute cellular rejection (ACR) after lung transplant is a leading risk factor for chronic lung allograft dysfunction. Prior studies have demonstrated dynamic microbial changes occurring within the allograft and gut that influence local adaptive and innate immune responses. However, the lung microbiome's overall impact on ACR risk remains poorly understood. Objectives: To evaluate whether temporal changes in microbial signatures were associated with the development of ACR. Methods: We performed cross-sectional and longitudinal analyses (joint modeling of longitudinal and time-to-event data and trajectory comparisons) of 16S rRNA gene sequencing results derived from lung transplant recipient lower airway samples collected at multiple time points. Measurements and Main Results: Among 103 lung transplant recipients, 25 (24.3%) developed ACR. In comparing samples acquired 1 month after transplant, subjects who never developed ACR demonstrated lower airway enrichment with several oral commensals (e.g., Prevotella and Veillonella spp.) than those with current or future (beyond 1 mo) ACR. However, a subgroup analysis of those who developed ACR beyond 1 month revealed delayed enrichment with oral commensals occurring at the time of ACR diagnosis compared with baseline, when enrichment with more traditionally pathogenic taxa was present. In longitudinal models, dynamic changes in α-diversity (characterized by an initial decrease and a subsequent increase) and in the taxonomic trajectories of numerous oral commensals were more commonly observed in subjects with ACR. Conclusions: Dynamic changes in the lower airway microbiota are associated with the development of ACR, supporting its potential role as a useful biomarker or in ACR pathogenesis.


Asunto(s)
Rechazo de Injerto , Trasplante de Pulmón , Humanos , Trasplante de Pulmón/efectos adversos , Masculino , Rechazo de Injerto/microbiología , Femenino , Persona de Mediana Edad , Estudios Longitudinales , Estudios Transversales , Adulto , Microbiota , ARN Ribosómico 16S/genética , Pulmón/microbiología , Anciano , Enfermedad Aguda
4.
Gut ; 73(5): 751-769, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331563

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Enfermedad Pulmonar Obstructiva Crónica/etiología , Pulmón/metabolismo , Pulmón/patología , Neumonía/etiología , Inflamación/metabolismo , Carbohidratos/farmacología
5.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34864851

RESUMEN

Although high-throughput data allow researchers to interrogate thousands of variables simultaneously, it can also introduce a significant number of spurious results. Here we demonstrate that correlation analysis of large datasets can yield numerous false positives due to the presence of outliers that canonical methods fail to identify. We present Correlations Under The InfluencE (CUTIE), an open-source jackknifing-based method to detect such cases with both parametric and non-parametric correlation measures, and which can also uniquely rescue correlations not originally deemed significant or with incorrect sign. Our approach can additionally be used to identify variables or samples that induce these false correlations in high proportion. A meta-analysis of various omics datasets using CUTIE reveals that this issue is pervasive across different domains, although microbiome data are particularly susceptible to it. Although the significance of a correlation eventually depends on the thresholds used, our approach provides an efficient way to automatically identify those that warrant closer examination in very large datasets.


Asunto(s)
Microbiota
6.
Am J Respir Crit Care Med ; 208(10): 1101-1114, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37677136

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and healthcare costs. Cigarette smoke is a causative factor; however, not all heavy smokers develop COPD. Microbial colonization and infections are contributing factors to disease progression in advanced stages. Objectives: We investigated whether lower airway dysbiosis occurs in mild-to-moderate COPD and analyzed possible mechanistic contributions to COPD pathogenesis. Methods: We recruited 57 patients with a >10 pack-year smoking history: 26 had physiological evidence of COPD, and 31 had normal lung function (smoker control subjects). Bronchoscopy sampled the upper airways, lower airways, and environmental background. Samples were analyzed by 16S rRNA gene sequencing, whole genome, RNA metatranscriptome, and host RNA transcriptome. A preclinical mouse model was used to evaluate the contributions of cigarette smoke and dysbiosis on lower airway inflammatory injury. Measurements and Main Results: Compared with smoker control subjects, microbiome analyses showed that the lower airways of subjects with COPD were enriched with common oral commensals. The lower airway host transcriptomics demonstrated differences in markers of inflammation and tumorigenesis, such as upregulation of IL-17, IL-6, ERK/MAPK, PI3K, MUC1, and MUC4 in mild-to-moderate COPD. Finally, in a preclinical murine model exposed to cigarette smoke, lower airway dysbiosis with common oral commensals augments the inflammatory injury, revealing transcriptomic signatures similar to those observed in human subjects with COPD. Conclusions: Lower airway dysbiosis in the setting of smoke exposure contributes to inflammatory injury early in COPD. Targeting the lower airway microbiome in combination with smoking cessation may be of potential therapeutic relevance.


Asunto(s)
Lesión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Disbiosis/complicaciones , ARN Ribosómico 16S , Enfermedad Pulmonar Obstructiva Crónica/genética , Inflamación/complicaciones , Lesión Pulmonar/complicaciones , Pulmón/patología
7.
Crit Care Med ; 51(4): 445-459, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790189

RESUMEN

OBJECTIVES: The COVID-19 pandemic threatened standard hospital operations. We sought to understand how this stress was perceived and manifested within individual hospitals and in relation to local viral activity. DESIGN: Prospective weekly hospital stress survey, November 2020-June 2022. SETTING: Society of Critical Care Medicine's Discovery Severe Acute Respiratory Infection-Preparedness multicenter cohort study. SUBJECTS: Thirteen hospitals across seven U.S. health systems. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We analyzed 839 hospital-weeks of data over 85 pandemic weeks and five viral surges. Perceived overall hospital, ICU, and emergency department (ED) stress due to severe acute respiratory infection patients during the pandemic were reported by a mean of 43% ( sd , 36%), 32% (30%), and 14% (22%) of hospitals per week, respectively, and perceived care deviations in a mean of 36% (33%). Overall hospital stress was highly correlated with ICU stress (ρ = 0.82; p < 0.0001) but only moderately correlated with ED stress (ρ = 0.52; p < 0.0001). A county increase in 10 severe acute respiratory syndrome coronavirus 2 cases per 100,000 residents was associated with an increase in the odds of overall hospital, ICU, and ED stress by 9% (95% CI, 5-12%), 7% (3-10%), and 4% (2-6%), respectively. During the Delta variant surge, overall hospital stress persisted for a median of 11.5 weeks (interquartile range, 9-14 wk) after local case peak. ICU stress had a similar pattern of resolution (median 11 wk [6-14 wk] after local case peak; p = 0.59) while the resolution of ED stress (median 6 wk [5-6 wk] after local case peak; p = 0.003) was earlier. There was a similar but attenuated pattern during the Omicron BA.1 subvariant surge. CONCLUSIONS: During the COVID-19 pandemic, perceived care deviations were common and potentially avoidable patient harm was rare. Perceived hospital stress persisted for weeks after surges peaked.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Estudios de Cohortes , Estudios Prospectivos , Hospitales
8.
Am J Respir Cell Mol Biol ; 67(2): 155-163, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35914321

RESUMEN

This report presents the proceedings from a workshop titled "Microbiome, Metabolism and Immunoregulation of Asthma" that was held virtually May 13 and 14, 2021. The workshop was jointly sponsored by the American Thoracic Society (Assembly on Allergy, Immunology, and Inflammation) and the National Institute of Allergy and Infectious Diseases. It convened an interdisciplinary group of experts with backgrounds in asthma immunology, microbiome science, metabolomics, computational biology, and translational pulmonary research. The main purpose was to identify key scientific gaps and needs to further advance research on microbial and metabolic mechanisms that may contribute to variable immune responses and disease heterogeneity in asthma. Discussions were structured around several topics, including 1) immune and microbial mechanisms of asthma pathogenesis in murine models, 2) the role of microbes in pediatric asthma exacerbations, 3) dysregulated metabolic pathways in asthma associated with obesity, 4) metabolism effects on macrophage function in adipose tissue and the lungs, 5) computational approaches to dissect microbiome-metabolite links, and 6) potential confounders of microbiome-disease associations in human studies. This report summarizes the major points of discussion, which included identification of specific knowledge gaps, challenges, and suggested directions for future research. These include questions surrounding mechanisms by which microbiota and metabolites shape host health versus an allergic or asthmatic state; direct and indirect influences of other biological factors, exposures, and comorbidities on these interactions; and ongoing technical and analytical gaps for clinical translation.


Asunto(s)
Asma , Hipersensibilidad , Microbiota , Animales , Asma/etiología , Niño , Humanos , Hipersensibilidad/complicaciones , Inmunidad , Ratones , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos
9.
Am J Respir Crit Care Med ; 203(9): 1099-1111, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166473

RESUMEN

Rationale: Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with an increased T-helper cell type 17 (Th17) inflammatory phenotype.Objectives: In this study, we evaluated the microbial and host immune-response dynamics after aspiration with oral commensals using a preclinical mouse model.Methods: Aspiration with a mixture of human oral commensals (MOC; Prevotella melaninogenica, Veillonella parvula, and Streptococcus mitis) was modeled in mice followed by variable time of killing. The genetic backgrounds of mice included wild-type, MyD88-knockout, and STAT3C backgrounds.Measurements and Main Results: 16S-rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host-transcriptome sequencing was used to characterize the host immune phenotype. Although MOC aspiration correlated with lower-airway dysbiosis that resolved within 5 days, it induced an extended inflammatory response associated with IL-17-producing T cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration before a respiratory challenge with S. pneumoniae led to a decrease in hosts' susceptibility to this pathogen.Conclusions: Thus, in otherwise healthy mice, a single aspiration event with oral commensals is rapidly cleared from the lower airways but induces a prolonged Th17 response that secondarily decreases susceptibility to S. pneumoniae. Translationally, these data implicate an immunoprotective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower-airway pathogens.


Asunto(s)
Infecciones Neumocócicas/prevención & control , Streptococcus pneumoniae , Células Th17/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/fisiología , Infecciones Neumocócicas/etiología , Prevotella melaninogenica , Streptococcus mitis , Veillonella
10.
Am J Respir Crit Care Med ; 203(3): 339-347, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32692582

RESUMEN

Rationale: Chronic hypersensitivity pneumonitis (CHP) is a condition that arises after repeated exposure and sensitization to inhaled antigens. The lung microbiome is increasingly implicated in respiratory disease, but, to date, no study has investigated the composition of microbial communities in the lower airways in CHP.Objectives: To characterize and compare the airway microbiome in subjects with CHP, subjects with idiopathic pulmonary fibrosis (IPF), and control subjects.Methods: We prospectively recruited individuals with a CHP diagnosis (n = 110), individuals with an IPF diagnosis (n = 45), and control subjects (n = 28). Subjects underwent BAL and bacterial DNA was isolated, quantified by quantitative PCR and the 16S ribosomal RNA gene was sequenced to characterize the bacterial communities in the lower airways.Measurements and Main Results: Distinct differences in the microbial profiles were evident in the lower airways of subjects with CHP and IPF. At the phylum level, the prevailing microbiota of both subjects with IPF and subjects with CHP included Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. However, in IPF, Firmicutes dominated, whereas the percentage of reads assigned to Proteobacteria in the same group was significantly lower than the percentage found in subjects with CHP. At the genus level, the Staphylococcus burden was increased in CHP, and Actinomyces and Veillonella burdens were increased in IPF. The lower airway bacterial burden in subjects with CHP was higher than that in control subjects but lower than that of those with IPF. In contrast to IPF, there was no association between bacterial burden and survival in CHP.Conclusions: The microbial profile of the lower airways in subjects with CHP is distinct from that of IPF, and, notably, the bacterial burden in individuals with CHP fails to predict survival.


Asunto(s)
Alveolitis Alérgica Extrínseca/microbiología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Fibrosis Pulmonar Idiopática/microbiología , Pulmón/microbiología , Microbiota , Adulto , Anciano , Anciano de 80 o más Años , Alveolitis Alérgica Extrínseca/epidemiología , Carga Bacteriana , Femenino , Humanos , Fibrosis Pulmonar Idiopática/epidemiología , Londres/epidemiología , Masculino , Persona de Mediana Edad
11.
J Allergy Clin Immunol ; 148(2): 533-549, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33493557

RESUMEN

BACKGROUND: Signifying the 2-compartments/1-disease paradigm, allergic rhinoconjunctivitis (ARC) and asthma (AA) are prevalent, comorbid conditions triggered by environmental factors (eg, house dust mites [HDMs]). However, despite the ubiquity of triggers, progression to severe ARC/AA is infrequent, suggesting either resilience or adaptation. OBJECTIVE: We sought to determine whether ARC/AA severity relates to maladaptive responses to disease triggers. METHODS: Adults with HDM-associated ARC were challenged repetitively with HDMs in an aeroallergen challenge chamber. Mechanistic traits associated with disease severity were identified. RESULTS: HDM challenges evoked maladaptive (persistently higher ARC symptoms), adaptive (progressive symptom reduction), and resilient (resistance to symptom induction) phenotypes. Symptom severity in the natural environment was an imprecise correlate of the phenotypes. Nasal airway traits, defined by low inflammation-effectual epithelial integrity, moderate inflammation-effectual epithelial integrity, and higher inflammation-ineffectual epithelial integrity, were hallmarks of the resilient, adaptive, and maladaptive evoked phenotypes, respectively. Highlighting a crosstalk mechanism, peripheral blood inflammatory tone calibrated these traits: ineffectual epithelial integrity associated with CD8+ T cells, whereas airway inflammation associated with both CD8+ T cells and eosinophils. Hallmark peripheral blood maladaptive traits were increased natural killer and CD8+ T cells, lower CD4+ mucosal-associated invariant T cells, and deficiencies along the TLR-IRF-IFN antiviral pathway. Maladaptive traits tracking HDM-associated ARC also contributed to AA risk and severity models. CONCLUSIONS: Repetitive challenges with HDMs revealed that maladaptation to disease triggers may underpin ARC/AA disease severity. A combinatorial therapeutic approach may involve reversal of loss-of-beneficial-function traits (ineffectual epithelial integrity, TLR-IRF-IFN deficiencies), mitigation of gain-of-adverse-function traits (inflammation), and blocking of a detrimental crosstalk between the peripheral blood and airway compartments.


Asunto(s)
Alérgenos/toxicidad , Asma/inmunología , Eosinófilos/inmunología , Linfocitos/inmunología , Pyroglyphidae , Mucosa Respiratoria/inmunología , Adulto , Alérgenos/inmunología , Animales , Asma/patología , Eosinófilos/patología , Femenino , Humanos , Inflamación/inmunología , Inflamación/patología , Linfocitos/patología , Masculino
12.
Eur Respir J ; 58(1)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33446604

RESUMEN

BACKGROUND: Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary. METHODS: Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed. RESULTS: Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing. CONCLUSIONS: Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.


Asunto(s)
Bacterias , Microbiota , Animales , Bacterias/genética , Genómica , Metagenoma , Ratones , ARN Ribosómico 16S/genética
13.
Crit Care Med ; 49(7): 1058-1067, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826583

RESUMEN

OBJECTIVES: To assess the impact of percutaneous dilational tracheostomy in coronavirus disease 2019 patients requiring mechanical ventilation and the risk for healthcare providers. DESIGN: Prospective cohort study; patients were enrolled between March 11, and April 29, 2020. The date of final follow-up was July 30, 2020. We used a propensity score matching approach to compare outcomes. Study outcomes were formulated before data collection and analysis. SETTING: Critical care units at two large metropolitan hospitals in New York City. PATIENTS: Five-hundred forty-one patients with confirmed severe coronavirus disease 2019 respiratory failure requiring mechanical ventilation. INTERVENTIONS: Bedside percutaneous dilational tracheostomy with modified visualization and ventilation. MEASUREMENTS AND MAIN RESULTS: Required time for discontinuation off mechanical ventilation, total length of hospitalization, and overall patient survival. Of the 541 patients, 394 patients were eligible for a tracheostomy. One-hundred sixteen were early percutaneous dilational tracheostomies with median time of 9 days after initiation of mechanical ventilation (interquartile range, 7-12 d), whereas 89 were late percutaneous dilational tracheostomies with a median time of 19 days after initiation of mechanical ventilation (interquartile range, 16-24 d). Compared with patients with no tracheostomy, patients with an early percutaneous dilational tracheostomy had a higher probability of discontinuation from mechanical ventilation (absolute difference, 30%; p < 0.001; hazard ratio for successful discontinuation, 2.8; 95% CI, 1.34-5.84; p = 0.006) and a lower mortality (absolute difference, 34%, p < 0.001; hazard ratio for death, 0.11; 95% CI, 0.06-0.22; p < 0.001). Compared with patients with late percutaneous dilational tracheostomy, patients with early percutaneous dilational tracheostomy had higher discontinuation rates from mechanical ventilation (absolute difference 7%; p < 0.35; hazard ratio for successful discontinuation, 1.53; 95% CI, 1.01-2.3; p = 0.04) and had a shorter median duration of mechanical ventilation in survivors (absolute difference, -15 d; p < 0.001). None of the healthcare providers who performed all the percutaneous dilational tracheostomies procedures had clinical symptoms or any positive laboratory test for severe acute respiratory syndrome coronavirus 2 infection. CONCLUSIONS: In coronavirus disease 2019 patients on mechanical ventilation, an early modified percutaneous dilational tracheostomy was safe for patients and healthcare providers and associated with improved clinical outcomes.


Asunto(s)
COVID-19/terapia , Respiración Artificial , Traqueostomía/métodos , Anciano , Estudios de Cohortes , Cuidados Críticos , Dilatación/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , SARS-CoV-2 , Factores de Tiempo
14.
Am J Respir Crit Care Med ; 202(12): 1678-1688, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32673495

RESUMEN

Rationale: Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease.Objectives: As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes between the environment and the host and possible effects on lung pathology present among workers.Methods: Workplace environmental microbiota were evaluated in air and MWF samples. Human microbiota were evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, in lung tissue samples from control subjects, and in skin, nasal, and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B cells were assessed.Measurements and Main Results: An increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared with control subjects. Among workers in different locations within the facility, those that worked in the machine shop area had skin, nasal, and oral microbiota more closely related to the microbiota present in the MWF samples. Lung samples from four index cases and skin and nasal samples from workers in the machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in the pathology of index cases.Conclusions: Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.


Asunto(s)
Aerosoles/efectos adversos , Contaminantes Ocupacionales del Aire/efectos adversos , Instalaciones Industriales y de Fabricación , Microbiota , Pseudomonas pseudoalcaligenes , Trastornos Respiratorios/fisiopatología , Adulto , Microbiología del Aire , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Respiratorios/etiología , Estados Unidos
15.
Am J Respir Cell Mol Biol ; 62(3): 283-299, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31661299

RESUMEN

The lung microbiome is associated with host immune response and health outcomes in experimental models and patient cohorts. Lung microbiome research is increasing in volume and scope; however, there are no established guidelines for study design, conduct, and reporting of lung microbiome studies. Standardized approaches to yield reliable and reproducible data that can be synthesized across studies will ultimately improve the scientific rigor and impact of published work and greatly benefit microbiome research. In this review, we identify and address several key elements of microbiome research: conceptual modeling and hypothesis framing; study design; experimental methodology and pitfalls; data analysis; and reporting considerations. Finally, we explore possible future directions and research opportunities. Our goal is to aid investigators who are interested in this burgeoning research area and hopefully provide the foundation for formulating consensus approaches in lung microbiome research.


Asunto(s)
Métodos Epidemiológicos , Pulmón/microbiología , Microbiota , Animales , Antiinfecciosos/farmacología , Técnicas de Tipificación Bacteriana , Líquidos Corporales/microbiología , Pruebas Respiratorias , Disbiosis/microbiología , Exposición a Riesgos Ambientales , Interacciones Microbiota-Huesped , Humanos , Metagenómica/métodos , Técnicas Microbiológicas , Microbiota/efectos de los fármacos , Modelos Animales , Modelos Biológicos , Reproducibilidad de los Resultados , Sistema Respiratorio/microbiología , Manejo de Especímenes/métodos , Esputo/microbiología , Investigación Biomédica Traslacional , Secuenciación Completa del Genoma
16.
Eur Respir J ; 56(4)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32499333

RESUMEN

INTRODUCTION: Neutrophilic inflammation is a major driver of bronchiectasis pathophysiology, and neutrophil elastase activity is the most promising biomarker evaluated in sputum to date. How active neutrophil elastase correlates with the lung microbiome in bronchiectasis is still unexplored. We aimed to understand whether active neutrophil elastase is associated with low microbial diversity and distinct microbiome characteristics. METHODS: An observational, cross-sectional study was conducted at the bronchiectasis programme of the Policlinico Hospital in Milan, Italy, where adults with bronchiectasis were enrolled between March 2017 and March 2019. Active neutrophil elastase was measured on sputum collected during stable state, microbiota analysed through 16S rRNA gene sequencing, molecular assessment of respiratory pathogens carried out through real-time PCR and clinical data collected. RESULTS: Among 185 patients enrolled, decreasing α-diversity, evaluated through the Shannon entropy (ρ -0.37, p<0.00001) and Pielou's evenness (ρ -0.36, p<0.00001) and richness (ρ -0.33, p<0.00001), was significantly correlated with increasing elastase. A significant difference in median levels of Shannon entropy as detected between patients with neutrophil elastase ≥20 µg·mL-1 (median 3.82, interquartile range 2.20-4.96) versus neutrophil elastase <20 µg·mL-1 (4.88, 3.68-5.80; p<0.0001). A distinct microbiome was found in these two groups, mainly characterised by enrichment with Pseudomonas in the high-elastase group and with Streptococcus in the low-elastase group. Further confirmation of the association of Pseudomonas aeruginosa with elevated active neutrophil elastase was found based on standard culture and targeted real-time PCR. CONCLUSIONS: High levels of active neutrophil elastase are associated to low microbiome diversity and specifically to P. aeruginosa infection.


Asunto(s)
Bronquiectasia , Microbiota , Infecciones por Pseudomonas , Adulto , Estudios Transversales , Humanos , Italia , Elastasa de Leucocito , Pseudomonas aeruginosa/genética , ARN Ribosómico 16S/genética , Esputo
17.
Occup Environ Med ; 77(6): 386-392, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32132182

RESUMEN

OBJECTIVES: Four machine manufacturing facility workers had a novel occupational lung disease of uncertain aetiology characterised by lymphocytic bronchiolitis, alveolar ductitis and emphysema (BADE). We aimed to evaluate current workers' respiratory health in relation to job category and relative exposure to endotoxin, which is aerosolised from in-use metalworking fluid. METHODS: We offered a questionnaire and spirometry at baseline and 3.5 year follow-up. Endotoxin exposures were quantified for 16 production and non-production job groups. Forced expiratory volume in one second (FEV1) decline ≥10% was considered excessive. We examined SMRs compared with US adults, adjusted prevalence ratios (aPRs) for health outcomes by endotoxin exposure tertiles and predictors of excessive FEV1 decline. RESULTS: Among 388 (89%) baseline participants, SMRs were elevated for wheeze (2.5 (95% CI 2.1 to 3.0)), but not obstruction (0.5 (95% CI 0.3 to 1.1)). Mean endotoxin exposures (range: 0.09-28.4 EU/m3) were highest for machine shop jobs. Higher exposure was associated with exertional dyspnea (aPR=2.8 (95% CI 1.4 to 5.7)), but not lung function. Of 250 (64%) follow-up participants, 11 (4%) had excessive FEV1 decline (range: 403-2074 mL); 10 worked in production. Wheeze (aPR=3.6 (95% CI 1.1 to 12.1)) and medium (1.3-7.5 EU/m3) endotoxin exposure (aPR=10.5 (95% CI 1.3 to 83.1)) at baseline were associated with excessive decline. One production worker with excessive decline had BADE on subsequent lung biopsy. CONCLUSIONS: Lung function loss and BADE were associated with production work. Relationships with relative endotoxin exposure indicate work-related adverse respiratory health outcomes beyond the sentinel disease cluster, including an incident BADE case. Until causative factors and effective preventive strategies for BADE are determined, exposure minimisation and medical surveillance of affected workforces are recommended.


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Bronquiolitis/epidemiología , Enfisema/epidemiología , Endotoxinas/efectos adversos , Enfermedades Profesionales/epidemiología , Exposición Profesional/efectos adversos , Adulto , Anciano , Contaminantes Ocupacionales del Aire/análisis , Bronquiolitis/inducido químicamente , Enfisema/inducido químicamente , Endotoxinas/análisis , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Instalaciones Industriales y de Fabricación , Persona de Mediana Edad , National Institute for Occupational Safety and Health, U.S. , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/análisis , Alveolos Pulmonares/patología , Encuestas y Cuestionarios , Estados Unidos
20.
Am J Respir Crit Care Med ; 199(1): 99-109, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29969291

RESUMEN

RATIONALE: Obstructive sleep apnea (OSA) is associated with recurrent obstruction, subepithelial edema, and airway inflammation. The resultant inflammation may influence or be influenced by the nasal microbiome. OBJECTIVES: To evaluate whether the composition of the nasal microbiota is associated with obstructive sleep apnea and inflammatory biomarkers. METHODS: Two large cohorts were used: 1) a discovery cohort of 472 subjects from the WTCSNORE (Seated, Supine and Post-Decongestion Nasal Resistance in World Trade Center Rescue and Recovery Workers) cohort, and 2) a validation cohort of 93 subjects rom the Zaragoza Sleep cohort. Sleep apnea was diagnosed using home sleep tests. Nasal lavages were obtained from cohort subjects to measure: 1) microbiome composition (based on 16S rRNA gene sequencing), and 2) biomarkers for inflammation (inflammatory cells, IL-8, and IL-6). Longitudinal 3-month samples were obtained in the validation cohort, including after continuous positive airway pressure treatment when indicated. MEASUREMENTS AND MAIN RESULTS: In both cohorts, we identified that: 1) severity of OSA correlated with differences in microbiome diversity and composition; 2) the nasal microbiome of subjects with severe OSA were enriched with Streptococcus, Prevotella, and Veillonella; and 3) the nasal microbiome differences were associated with inflammatory biomarkers. Network analysis identified clusters of cooccurring microbes that defined communities. Several common oral commensals (e.g., Streptococcus, Rothia, Veillonella, and Fusobacterium) correlated with apnea-hypopnea index. Three months of treatment with continuous positive airway pressure did not change the composition of the nasal microbiota. CONCLUSIONS: We demonstrate that the presence of an altered microbiome in severe OSA is associated with inflammatory markers. Further experimental approaches to explore causal links are needed.


Asunto(s)
Microbiota , Cavidad Nasal/microbiología , Apnea Obstructiva del Sueño/microbiología , Adulto , Biomarcadores/análisis , Femenino , Humanos , Interleucina-6/análisis , Interleucina-8/análisis , Masculino , Microbiota/genética , Persona de Mediana Edad , Líquido del Lavado Nasal/química , ARN Ribosómico 16S/genética , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda