Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Bioinformatics ; 20(1): 543, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684857

RESUMEN

BACKGROUND: Transcriptomic data is often used to build statistical models which are predictive of a given phenotype, such as disease status. Genes work together in pathways and it is widely thought that pathway representations will be more robust to noise in the gene expression levels. We aimed to test this hypothesis by constructing models based on either genes alone, or based on sample specific scores for each pathway, thus transforming the data to a 'pathway space'. We progressively degraded the raw data by addition of noise and examined the ability of the models to maintain predictivity. RESULTS: Models in the pathway space indeed had higher predictive robustness than models in the gene space. This result was independent of the workflow, parameters, classifier and data set used. Surprisingly, randomised pathway mappings produced models of similar accuracy and robustness to true mappings, suggesting that the success of pathway space models is not conferred by the specific definitions of the pathway. Instead, predictive models built on the true pathway mappings led to prediction rules with fewer influential pathways than those built on randomised pathways. The extent of this effect was used to differentiate pathway collections coming from a variety of widely used pathway databases. CONCLUSIONS: Prediction models based on pathway scores are more robust to degradation of gene expression information than the equivalent models based on ungrouped genes. While models based on true pathway scores are not more robust or accurate than those based on randomised pathways, true pathways produced simpler prediction rules, emphasizing a smaller number of pathways.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica , Transducción de Señal , Bases de Datos Factuales , Expresión Génica , Humanos , Modelos Estadísticos , Fenotipo , Transcriptoma
2.
Bioinformatics ; 31(9): 1505-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25505093

RESUMEN

MOTIVATION: The field of toxicogenomics (the application of '-omics' technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available. RESULTS: The Data Infrastructure for Chemical Safety Assessment (diXa) is a robust and sustainable infrastructure storing toxicogenomics data. A central data warehouse is connected to a portal with links to chemical information and molecular and phenotype data. diXa is publicly available through a user-friendly web interface. New data can be readily deposited into diXa using guidelines and templates available online. Analysis descriptions and tools for interrogating the data are available via the diXa portal. AVAILABILITY AND IMPLEMENTATION: http://www.dixa-fp7.eu CONTACT: d.hendrickx@maastrichtuniversity.nl; info@dixa-fp7.eu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases de Datos de Compuestos Químicos , Toxicogenética , Animales , Perfilación de la Expresión Génica , Humanos , Metabolómica , Proteómica , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda