Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 160(4): 771-784, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679766

RESUMEN

Aneuploid genomes, characterized by unbalanced chromosome stoichiometry (karyotype), are associated with cancer malignancy and drug resistance of pathogenic fungi. The phenotypic diversity resulting from karyotypic diversity endows the cell population with superior adaptability. We show here, using a combination of experimental data and a general stochastic model, that the degree of phenotypic variation, thus evolvability, escalates with the degree of overall growth suppression. Such scaling likely explains the challenge of treating aneuploidy diseases with a single stress-inducing agent. Instead, we propose the design of an "evolutionary trap" (ET) targeting both karyotypic diversity and fitness. This strategy entails a selective condition "channeling" a karyotypically divergent population into one with a predominant and predictably drugable karyotypic feature. We provide a proof-of-principle case in budding yeast and demonstrate the potential efficacy of this strategy toward aneuploidy-based azole resistance in Candida albicans. By analyzing existing pharmacogenomics data, we propose the potential design of an ET against glioblastoma.


Asunto(s)
Aneuploidia , Candida albicans/efectos de los fármacos , Candida albicans/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Antifúngicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Línea Celular Tumoral , Farmacorresistencia Fúngica , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Fluconazol/farmacología , Humanos , Higromicina B/farmacología , Irinotecán , Saccharomyces cerevisiae/metabolismo
2.
Cell ; 146(1): 92-104, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729782

RESUMEN

Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.


Asunto(s)
Transactivadores/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Complejo Mediador , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo
3.
PLoS Genet ; 18(12): e1009847, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477651

RESUMEN

Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtfpoison protein and a Wtfantidote protein using alternative transcriptional start sites. Here, we analyze how the expression and localization of the Wtf proteins are regulated to achieve drive. We show that transcriptional timing and selective protein exclusion from developing spores ensure that all spores are exposed to Wtf4poison, but only the spores that inherit wtf4 receive a dose of Wtf4antidote sufficient for survival. In addition, we show that the Mei4 transcription factor, a master regulator of meiosis, controls the expression of the wtf4poison transcript. This transcriptional regulation, which includes the use of a critical meiotic transcription factor, likely complicates the universal suppression of wtf genes without concomitantly disrupting spore viability. We propose that these features contribute to the evolutionary success of the wtf drivers.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Esporas Fúngicas/genética , Proteínas de Schizosaccharomyces pombe/genética , Meiosis , Factores de Transcripción/genética
4.
Dev Biol ; 488: 91-103, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609633

RESUMEN

The Drosophila BMP 2/4 homologue Decapentaplegic (Dpp) acts as a morphogen to regulate diverse developmental processes, including wing morphogenesis. Transcriptional feedback regulation of this pathway ensures tightly controlled signaling outputs to generate the precise pattern of the adult wing. Nevertheless, few direct Dpp target genes have been explored and our understanding of feedback regulation remains incomplete. Here we employ transcriptional profiling following dpp conditional knockout to identify nord, a novel Dpp/BMP feedback regulator. nord mutants generated by CRISPR/Cas9 mutagenesis produce a smaller wing and display low penetrance venation defects. At the molecular level, nord encodes a secreted heparin-binding protein, and we show that its overexpression is sufficient to antagonize Dpp/BMP signaling. Mechanistically, we demonstrate that Nord physically interacts with the Dpp/BMP co-receptor Dally and promotes its degradation. In sum, we propose that Nord fine-tunes Dpp/BMP signaling by regulating Dally availability on the cell surface, with implications for both developmental and disease models.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentación , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/fisiología , Alas de Animales/metabolismo
5.
Cell ; 135(5): 879-93, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041751

RESUMEN

The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and cytokinesis. The evolved cytokinesis phenotypes correlated with specific changes in the transcriptome. Polyploidy and aneuploidy were common genetic alterations in the best evolved strains, and aneuploidy could account for gene expression changes due directly to altered chromosome stoichiometry as well as to downstream effects. The phenotypic effect of aneuploidy could be recapitulated with increased copy numbers of specific regulatory genes in myo1Delta cells. These results demonstrate the evolvability of even a well-conserved process and suggest that changes in chromosome stoichiometry provide a source of heritable variation driving the emergence of adaptive phenotypes when the cell division machinery is strongly perturbed.


Asunto(s)
Aneuploidia , Evolución Molecular Dirigida , Cadenas Pesadas de Miosina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocinesis , Eliminación de Gen , Genoma Fúngico , Poliploidía
6.
Dev Biol ; 433(2): 357-373, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100657

RESUMEN

The epidermis is essential for animal survival, providing both a protective barrier and cellular sensor to external environments. The generally conserved embryonic origin of the epidermis, but the broad morphological and functional diversity of this organ across animals is puzzling. We define the transcriptional regulators underlying epidermal lineage differentiation in the planarian Schmidtea mediterranea, an invertebrate organism that, unlike fruitflies and nematodes, continuously replaces its epidermal cells. We find that Smed-p53, Sox and Pax transcription factors are essential regulators of epidermal homeostasis, and act cooperatively to regulate genes associated with early epidermal precursor cell differentiation, including a tandemly arrayed novel gene family (prog) of secreted proteins. Additionally, we report on the discovery of distinct and previously undescribed secreted organelles whose production is dependent on the transcriptional activity of soxP-3, and which we term Hyman vesicles.


Asunto(s)
Células Epidérmicas , Proteínas del Helminto/fisiología , Planarias/citología , Estructuras Animales/ultraestructura , Animales , Anticuerpos Antihelmínticos/inmunología , Diferenciación Celular/genética , Linaje de la Célula , Movimiento Celular , Epidermis/metabolismo , Epidermis/efectos de la radiación , Epidermis/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Genes de Helminto , Proteínas del Helminto/genética , Proteínas del Helminto/inmunología , Mesodermo/citología , Microscopía Electrónica , Familia de Multigenes , Orgánulos/ultraestructura , Planarias/metabolismo , Planarias/ultraestructura , Interferencia de ARN , Factores de Transcripción/fisiología
7.
Nature ; 482(7384): 246-50, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286062

RESUMEN

Aneuploidy--the state of having uneven numbers of chromosomes--is a hallmark of cancer and a feature identified in yeast from diverse habitats. Recent studies have shown that aneuploidy is a form of large-effect mutation that is able to confer adaptive phenotypes under diverse stress conditions. Here we investigate whether pleiotropic stress could induce aneuploidy in budding yeast (Saccharomyces cerevisae). We show that whereas diverse stress conditions can induce an increase in chromosome instability, proteotoxic stress, caused by transient Hsp90 (also known as Hsp82 or Hsc82) inhibition or heat shock, markedly increased chromosome instability to produce a cell population with high karyotype diversity. The induced chromosome instability is linked to an evolutionarily conserved role for the Hsp90 chaperone complex in kinetochore assembly. Continued growth in the presence of an Hsp90 inhibitor resulted in the emergence of drug-resistant colonies with chromosome XV gain. This drug-resistance phenotype is a quantitative trait involving copy number increases of at least two genes located on chromosome XV. Short-term exposure to Hsp90 stress potentiated fast adaptation to unrelated cytotoxic compounds by means of different aneuploid chromosome stoichiometries. These findings demonstrate that aneuploidy is a form of stress-inducible mutation in eukaryotes, capable of fuelling rapid phenotypic evolution and drug resistance, and reveal a new role for Hsp90 in regulating the emergence of adaptive traits under stress.


Asunto(s)
Adaptación Biológica , Aneuploidia , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Inestabilidad Cromosómica/efectos de los fármacos , Inestabilidad Cromosómica/genética , Cromosomas Fúngicos/efectos de los fármacos , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Farmacorresistencia Fúngica , Evolución Molecular , Cariotipificación , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Fenotipo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Tunicamicina/farmacología
8.
Mol Cell Proteomics ; 13(6): 1510-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24722732

RESUMEN

The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBß, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.


Asunto(s)
Mapas de Interacción de Proteínas/genética , Proteómica , Factor de Transcripción ReIA/biosíntesis , Factores de Transcripción/biosíntesis , Citoplasma/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Espectrometría de Masas , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/genética
9.
Mol Cell Proteomics ; 13(11): 3114-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25073741

RESUMEN

Histone deacetylases (HDACs) are targets for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor approved by the U.S. Food and Drug Administration for the treatment of cutaneous T-cell lymphoma. To obtain a better mechanistic understanding of the Sin3/HDAC complex in cancer, we extended its protein-protein interaction network and identified a mutually exclusive pair within the complex. We then assessed the effects of SAHA on the disruption of the complex network through six homologous baits. SAHA perturbs multiple protein interactions and therefore compromises the composition of large parts of the Sin3/HDAC network. A comparison of the effect of SAHA treatment on gene expression in breast cancer cells to a knockdown of the ING2 subunit indicated that a portion of the anticancer effects of SAHA may be attributed to the disruption of ING2's association with the complex. Our dynamic protein interaction network resource provides novel insights into the molecular mechanism of SAHA action and demonstrates the potential for drugs to rewire networks.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Proteínas de Homeodominio/genética , Ácidos Hidroxámicos/farmacología , Mapas de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Proteínas Supresoras de Tumor/genética , Línea Celular Tumoral , Femenino , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Unión Proteica , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Vorinostat
10.
Mol Cell Proteomics ; 11(4): M111.011544, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22199229

RESUMEN

A significant challenge in biology is to functionally annotate novel and uncharacterized proteins. Several approaches are available for deducing the function of proteins in silico based upon sequence homology and physical or genetic interaction, yet this approach is limited to proteins with well-characterized domains, paralogs and/or orthologs in other species, as well as on the availability of suitable large-scale data sets. Here, we present a quantitative proteomics approach extending the protein network of core histones H2A, H2B, H3, and H4 in Saccharomyces cerevisiae, among which a novel associated protein, the previously uncharacterized Ydl156w, was identified. In order to predict the role of Ydl156w, we designed and applied integrative bioinformatics, quantitative proteomics and biochemistry approaches aiming to infer its function. Reciprocal analysis of Ydl156w protein interactions demonstrated a strong association with all four histones and also to proteins strongly associated with histones including Rim1, Rfa2 and 3, Yku70, and Yku80. Through a subsequent combination of the focused quantitative proteomics experiments with available large-scale genetic interaction data and Gene Ontology functional associations, we provided sufficient evidence to associate Ydl156w with multiple processes including chromatin remodeling, transcription and DNA repair/replication. To gain deeper insights into the role of Ydl156w in histone biology we investigated the effect of the genetic deletion of ydl156w on H4 associated proteins, which lead to a dramatic decrease in the association of H4 with RNA polymerase III proteins. The implication of a role for Ydl156w in RNA Polymerase III mediated transcription was consequently verified by RNA-Seq experiments. Finally, using these approaches we generated a refined network of Ydl156w-associated proteins.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteómica/métodos , ARN Polimerasa III/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
11.
Nat Genet ; 54(5): 684-693, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551306

RESUMEN

Cis-regulatory changes are key drivers of adaptative evolution. However, their contribution to the metabolic adaptation of organisms is not well understood. Here, we used a unique vertebrate model, Astyanax mexicanus-different morphotypes of which survive in nutrient-rich surface and nutrient-deprived cave waters-to uncover gene regulatory networks underlying metabolic adaptation. We performed genome-wide epigenetic profiling in the liver tissues of Astyanax and found that many of the identified cis-regulatory elements (CREs) have genetically diverged and have differential chromatin features between surface and cave morphotypes, while retaining remarkably similar regulatory signatures between independently derived cave populations. One such CRE in the hpdb gene harbors a genomic deletion in cavefish that abolishes IRF2 repressor binding and derepresses enhancer activity in reporter assays. Selection of this mutation in multiple independent cave populations supports its importance in cave adaptation, and provides novel molecular insights into the evolutionary trade-off between loss of pigmentation and adaptation to food-deprived caves.


Asunto(s)
Characidae , Aclimatación , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Cuevas , Characidae/genética , Characidae/metabolismo , Mutación
12.
Cell Regen ; 10(1): 15, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740162

RESUMEN

BACKGROUND: The pluripotent stem cells in planarians, a model for tissue and cellular regeneration, remain further identification. We recently developed a method to enrich piwi-1+ cells in Schmidtea mediterranea, by staining cells with SiR-DNA and Cell Tracker Green, named SirNeoblasts that permits their propagation and subsequent functional study in vivo. Since traditional enrichment for planarian neoblasts by Hoechst 33342 staining generates X1 cells, blocking the cell cycle and inducing cytotoxicity, this method by SiR-DNA and Cell Tracker Green represents a complementary technological advance for functional investigation of cell fate and regeneration. However, the similarities in heterogeneity of cell subtypes between SirNeoblasts and X1 remain unknown. RESULTS: In this work, we performed single cell RNA sequencing of SirNeoblasts for comparison with differential expression patterns in a publicly available X1 single cell RNA sequencing data. We found first that all of the lineage-specific progenitor cells in X1 were present in comparable proportions in SirNeoblasts. In addition, SirNeoblasts contain an early muscle progenitor that is unreported in X1. Analysis of new markers for putative pluripotent stem cells identified here, with subsequent sub-clustering analysis, revealed earlier lineages of epidermal, muscular, intestinal, and pharyngeal progenitors than have been observed in X1. Using the gcm as a marker, we also identified a cell subpopulation resided in previously identified tgs-1+ neoblasts. Knockdown of gcm impaired the neoblast repopulation, suggesting a function of gcm in neoblasts. CONCLUSIONS: In summary, the use of SirNeoblasts will enable broad experimental advances in regeneration and cell fate specification, given the possibility for propagation and transplantation of recombinant and mutagenized pluripotent stem cells that are not previously afforded to this rapid and versatile model system.

13.
Nat Commun ; 12(1): 6706, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795249

RESUMEN

Hox genes are highly conserved transcription factors renowned for their roles in the segmental patterning of the embryonic anterior-posterior (A/P) axis. We report functions for Hox genes in A/P tissue segmentation and transverse fission behavior underlying asexual reproduction in adult planarian flatworms, Schmidtea mediterranea. Silencing of each of the Hox family members identifies 5 Hox genes required for asexual reproduction. Among these, silencing of hox3 genes results in supernumerary fission segments, while silencing of post2b eliminates segmentation altogether. The opposing roles of hox3 and post2b in segmentation are paralleled in their respective regulation of fission behavior. Silencing of hox3 increases the frequency of fission behavior initiation while silencing of post2b eliminates fission behavior entirely. Furthermore, we identify a network of downstream effector genes mediating Hox gene functions, providing insight into their respective mechanisms of action. In particular, we resolve roles for post2b and effector genes in the functions of the marginal adhesive organ in fission behavior regulation. Collectively, our study establishes adult stage roles for Hox genes in the regulation of tissue segmentation and behavior associated with asexual reproduction.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto/genética , Genes Homeobox/genética , Planarias/genética , Animales , Proteínas de Homeodominio/genética , Hibridación Fluorescente in Situ , Microscopía Confocal , Microscopía Electrónica de Rastreo , Planarias/crecimiento & desarrollo , Planarias/ultraestructura , Interferencia de ARN , RNA-Seq/métodos , Reproducción Asexuada/genética , Factores de Transcripción/genética
14.
Elife ; 62017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28841138

RESUMEN

Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as indicated by a lack of growth response to pheromone. The silencing defect was not limited to cryptic mating type loci and was associated with broad changes in histone modifications and chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can be partially recapitulated by an extra copy of several genes on chromosome X. These results suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.


Asunto(s)
Aneuploidia , Cromatina/metabolismo , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/genética , Ciclo Celular
15.
Elife ; 52016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27441386

RESUMEN

The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration.


Asunto(s)
Microbioma Gastrointestinal , Sistema de Señalización de MAP Quinasas , Platelmintos/microbiología , Platelmintos/fisiología , Regeneración , Animales , Apoptosis
16.
Dev Cell ; 38(4): 413-29, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27523733

RESUMEN

A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Proteínas del Helminto/genética , Planarias/citología , Regeneración/fisiología , Células Madre/citología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis/genética , División Celular Asimétrica/genética , Proliferación Celular/genética , ADN Helicasas/metabolismo , Inestabilidad Genómica/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal , Células Madre/efectos de la radiación
17.
Cell Rep ; 13(12): 2741-55, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26711341

RESUMEN

Histone H3 lysine 4 trimethylation (H3K4me3) is known to correlate with both active and poised genomic loci, yet many questions remain regarding its functional roles in vivo. We identify functional genomic targets of two H3K4 methyltransferases, Set1 and MLL1/2, in both the stem cells and differentiated tissue of the planarian flatworm Schmidtea mediterranea. We show that, despite their common substrate, these enzymes target distinct genomic loci in vivo, which are distinguishable by the pattern each enzyme leaves on the chromatin template, i.e., the breadth of the H3K4me3 peak. Whereas Set1 targets are largely associated with the maintenance of the stem cell population, MLL1/2 targets are specifically enriched for genes involved in ciliogenesis. These data not only confirm that chromatin regulation is fundamental to planarian stem cell function but also provide evidence for post-embryonic functional specificity of H3K4me3 methyltransferases in vivo.


Asunto(s)
Proteínas de Unión al ADN/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Drosophila , Genómica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Platelmintos
18.
Elife ; 4: e10501, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26457503

RESUMEN

Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Células Epiteliales/fisiología , Animales , Factores de Transcripción de la Respuesta de Crecimiento Precoz/antagonistas & inhibidores , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Epidermis/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Silenciador del Gen , Planarias
19.
Nat Commun ; 6: 5941, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25575120

RESUMEN

Regulation of transcription elongation by RNA polymerase II (Pol II) is a key regulatory step in gene transcription. Recently, the little elongation complex (LEC)-which contains the transcription elongation factor ELL/EAF-was found to be required for the transcription of Pol II-dependent small nuclear RNA (snRNA) genes. Here we show that the human Mediator subunit MED26 plays a role in the recruitment of LEC to a subset of snRNA genes through direct interaction of EAF and the N-terminal domain (NTD) of MED26. Loss of MED26 in cells decreases the occupancy of LEC at a subset of snRNA genes and results in a reduction in their transcription. Our results suggest that the MED26-NTD functions as a molecular switch in the exchange of TBP-associated factor 7 (TAF7) for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.


Asunto(s)
Complejo Mediador/metabolismo , Extensión de la Cadena Peptídica de Translación , ARN Nuclear Pequeño/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , ADN Polimerasa II/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación Puntual , Unión Proteica , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Células Sf9 , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo
20.
Dev Cell ; 29(1): 112-27, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24684830

RESUMEN

The eukaryotic cell cycle, driven by both transcriptional and posttranslational mechanisms, is the central molecular oscillator underlying tissue growth throughout animals. Although genome-wide studies have investigated cell-cycle-associated transcription in unicellular systems, global patterns of periodic transcription in multicellular tissues remain largely unexplored. Here we define the cell-cycle-associated transcriptome of the developing Drosophila wing epithelium and compare it with that of cultured Drosophila S2 cells, revealing a core set of periodic genes and a surprising degree of context specificity in periodic transcription. We further employ RNAi-mediated phenotypic profiling to define functional requirements for more than 300 periodic genes, with a focus on those required for cell proliferation in vivo. Finally, we investigate uncharacterized genes required for interkinetic nuclear migration. Combined, these findings provide a global perspective on cell-cycle control in vivo, and they highlight a critical need to understand the context-specific regulation of cell proliferation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Genoma de los Insectos , Transcriptoma , Alas de Animales/embriología , Animales , Proteínas de Ciclo Celular/genética , Drosophila/embriología , Drosophila/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Alas de Animales/citología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda