Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 125(24): 240406, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412066

RESUMEN

Classical mechanics obeys the intuitive logic that a physical event happens at a definite spatial point. Entanglement, however, breaks this logic by enabling interactions without a specific location. In this work we study these delocalized interactions. These are quantum interactions that create less locational information than would be possible classically, as captured by the disturbance induced on some spatial superposition state. We introduce quantum games to capture the effect and demonstrate a direct operational use for quantum concurrence in that it bounds the nonclassical performance gain. We also find a connection with quantum teleportation, and demonstrate the games using an IBM quantum processor.

2.
Sci Adv ; 7(47): eabi8009, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34788090

RESUMEN

Quantum computers are becoming increasingly accessible and may soon outperform classical computers for useful tasks. However, qubit readout errors remain a substantial hurdle to running quantum algorithms on current devices. We present a scheme to more efficiently mitigate these errors on quantum hardware and numerically show that our method consistently gives advantage over previous mitigation schemes. Our scheme removes biases in the readout errors, allowing a general error model to be built with far fewer calibration measurements. Specifically, for reading out n-qubits, we show a factor of 2n reduction in the number of calibration measurements without sacrificing the ability to compensate for correlated errors. Our approach can be combined with, and simplify, other mitigation methods, allowing tractable mitigation even for large numbers of qubits.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda