Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Biol Int ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570921

RESUMEN

Melanoma is an aggressive malignancy and remains a major cause of skin cancer mortality, highlighting the need for new treatment strategies. Recent findings revealed that L-kynurenine and quinolinic acid induce cytotoxicity and morphological changes in B16 F10 melanoma cells in vitro. This paper highlights the effects of L-kynurenine and quinolinic acid at previously determined half-maximal inhibitory concentrations on cell cycle progression, cell death and extracellular signal-regulated protein kinase inhibition. Melanoma, B16 F10 and murine macrophages, RAW 264.7 cells were used in this study, as both cell lines express all the enzymes associated with the kynurenine pathway. Post exposure to the compounds at half-maximal inhibitory concentrations, transmission electron microscopy was used to assess intracellular morphological changes. Flow cytometry was used to analyse cell cycle progression and quantify apoptosis via the dual staining of Annexin V and propidium iodide and cell survival via extracellular signal-regulated protein kinase. L-kynurenine and quinolinic acid at half-maximal inhibitory concentrations induced intracellular morphological changes representative of cell death. Flow cytometry revealed alterations in cell cycle distribution, increased apoptosis and significantly inhibition of cell survival. L-kynurenine and quinolinic acid are exogenous kynurenine compounds which inhibited cell survival through extracellular signal-regulated protein kinase inhibition, induced cell cycle alterations and induced apoptosis in B16 F10 melanoma cells.

2.
Cell Biochem Funct ; 42(4): e4065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807444

RESUMEN

Cancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement. Kynurenine metabolites which include l-kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid have been shown to inhibit T-cell proliferation resulting in a decrease in cell growth of natural killer cells and T cells. Furthermore, metabolites such as  l-kynurenine have been shown to inhibit proliferation of melanoma cells in vitro. Considering these metabolite properties, the present study aimed to explore the in vitro effects of  l-kynurenine, quinolinic acid and kynurenic acid on endothelioma sEnd-2 cells and on endothelial (EA. hy926 cells) (control cell line). The in vitro effect at 24, 48, and 72 h exposure to a range of 1-4 mM of the respective kynurenine metabolites on the two cell lines in terms of cell morphology, cell cycle progression and induction of apoptosis was assessed. The half inhibitory concentration (IC50), as determined using nonlinear regression, for  l-kynurenine, quinolinic acid and kynurenic acid was 9.17, 15.56, and 535.40 mM, respectively. Optical transmitted light differential interference contrast and hematoxylin and eosin staining revealed cells blocked in metaphase, formation of apoptotic bodies and compromised cell density in  l-kynurenine-treated cells. A statistically significant increase in the number of cells present in the sub-G1 phase was observed in  l-kynurenine-treated sample. To our knowledge, this was the first in vitro study conducted to investigate the mechanism of action of kynurenine metabolites on endothelioma sEnd-2 cells. It can be concluded that  l-kynurenine exerts an antiproliferative effect on the endothelioma sEnd-2 cell line by decreasing cell growth and proliferation as well as a metaphase block. These hallmarks suggest cell death via apoptosis. Further research will be conducted on  l-kynurenine to assess the effect on cell adhesion in vitro and in vivo as cell-cell adhesion has been shown to increase metastasis to distant organs therefore, the inhibition of adhesion may lead to a decrease in metastasis.


Asunto(s)
Apoptosis , Proliferación Celular , Quinurenina , Ácido Quinolínico , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/análogos & derivados , Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácido Quinolínico/farmacología , Ácido Quinolínico/metabolismo , Ácido Quinurénico/farmacología , Ácido Quinurénico/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Relación Dosis-Respuesta a Droga
3.
Clin Exp Pharmacol Physiol ; 51(6): e13865, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692577

RESUMEN

CTCE-9908, a CXC chemokine receptor 4 (CXCR4) antagonist, prevents CXCR4 phosphorylation and inhibits the interaction with chemokine ligand 12 (CXCL12) and downstream signalling pathways associated with metastasis. This study evaluated the in vitro effects of CTCE-9908 on B16 F10 melanoma cells with the use of mathematical modelling. Crystal violet staining was used to construct a mathematical model of CTCE-9908 B16 F10 (melanoma) and RAW 264.7 (non-cancerous macrophage) cell lines on cell viability to predict the half-maximal inhibitory concentration (IC50). Morphological changes were assessed using transmission electron microscopy. Flow cytometry was used to assess changes in cell cycle distribution, apoptosis via caspase-3, cell survival via extracellular signal-regulated kinase1/2 activation, CXCR4 activation and CXCL12 expression. Mathematical modelling predicted IC50 values from 0 to 100 h. At IC50, similar cytotoxicity between the two cell lines and ultrastructural morphological changes indicative of cell death were observed. At a concentration 10 times lower than IC50, CTCE-9908 induced inhibition of cell survival (p = 0.0133) in B16 F10 cells but did not affect caspase-3 or cell cycle distribution in either cell line. This study predicts CTCE-9908 IC50 values at various time points using mathematical modelling, revealing cytotoxicity in melanoma and non-cancerous cells. CTCE-9908 significantly inhibited melanoma cell survival at a concentration 10 times lower than the IC50 in B16 F10 cells but not RAW 264.7 cells. However, CTCE-9908 did not affect CXCR4 phosphorylation, apoptosis,\ or cell cycle distribution in either cell line.


Asunto(s)
Apoptosis , Supervivencia Celular , Receptores CXCR4 , Ratones , Supervivencia Celular/efectos de los fármacos , Animales , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Apoptosis/efectos de los fármacos , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Células RAW 264.7 , Línea Celular Tumoral , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Modelos Biológicos , Ciclo Celular/efectos de los fármacos , Quimiocina CXCL12/metabolismo
4.
Cell Biochem Funct ; 41(7): 912-922, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661337

RESUMEN

The metastatic behavior of melanoma has accentuated the need for specific therapy targets. Compounds, namely l-kynurenine ( l-kyn), quinolinic acid (Quin), and kynurenic acid (KA) previously displayed antiproliferative and cytotoxic effects in vitro against cancer cells. Despite the growing interest in these compounds there are limited studies examining the in vitro effects on melanoma. In B16 F10 melanoma cells, RAW 264.7 macrophage cells, and HaCat keratinocyte cells, postexposure to the compounds, crystal violet staining was used to determine the half-maximal inhibitory concentration (IC50 ), whereas polarization-optical transmitted light differential interference contrast and light microscopy after hematoxylin and eosin (H&E) staining was used to assess morphological changes.  l-kyn, Quin, and KA-induced cytotoxicity in all cell lines, with  l-kyn being the most cytotoxic compound.  l-kyn and KA at IC50 -induced morphological changes in B16 F10, RAW 264.7, and HaCat cell lines, whereas Quin had effects on B16 F10 and RAW 264.7 cells but did not affect HaCat cells.  l-kyn, Quin, and KA each display different levels of cytotoxicity, which were cell line specific.  l-kyn was shown to be the most potent compound against all cell lines and may offer future treatment strategies when combined with other viable treatments against melanoma.

5.
Cell Biochem Funct ; 40(6): 608-622, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35789495

RESUMEN

Cancer is the second leading cause of mortality worldwide. Skin cancer is the most common cancer in South Africa with nearly 20,000 reported cases every year and 700 deaths. If diagnosed early, the 5-year survival rate is about 90%, however, when diagnosed late, the 5-year survival rate decreases to about 20%. Melanoma is a type of skin cancer with an estimated 5-year survival rate of approximately 90%. Neuroblastoma is a paediatric cancer with a low survival rate. Sixty percent of patients with metastatic disease do not survive 5 years after diagnosis. Despite recent advances in targeted therapies, there is a crucial need to identify reliable prognostic biomarkers which will be able to contribute to the development of more precision-based chemotherapeutic strategies to prevent tumour migration and metastasis. The compound, CTCE-9908 inhibits the binding of CXC chemokine ligand 12 (CXCL12) to the CXC chemokine receptor 4 (CXCR4) receptor leading to reduced metastasis. Kynurenine metabolites are derived tryptophan, which is an essential amino acid. Kynurenine metabolites inhibit T-cell proliferation resulting in cell growth arrest. For this reason, chemokines receptors represent potential targets for the treatment of cancer growth and metastasis. In this review paper, the role of the CXCL12/CXCR4 signalling pathway in the development of cancer is highlighted together with the current available treatments involving the CTCE-9908 compound in combination with microtubule inhibitors like paclitaxel and docetaxel.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Quimiocina CXCL12 , Quimiocinas CXC , Niño , Humanos , Quinurenina , Melanoma/tratamiento farmacológico , Péptidos/farmacología , Receptores CXCR4
6.
Molecules ; 27(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744933

RESUMEN

Polyphenols are inversely associated with the incidence of chronic diseases, but therapeutic use is limited by poor stability and bioaccessibility. Encapsulation has been shown to overcome some of these limitations. A selection of polyphenols (catechin, gallic acid, and epigallocatechin gallate) and their combinations were encapsulated in beta-cyclodextrin (ßCD). Encapsulation was characterized and the thermal and storage stability was evaluated using the 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The samples were then subjected to in vitro digestion using a simple digestion (SD) model (gastric and duodenal phases) and a more complex digestion (CD) model (oral, gastric, and duodenal phases). Thereafter, the chemical (oxygen radical absorbance capacity assay) and cellular (dichlorofluorescein diacetate assay in Caco-2 cells) antioxidant and antiglycation (advanced glycation end-products assay) activities were determined. Inclusion complexes formed at a 1:1 molar ratio with a high encapsulation yield and efficiency. Encapsulation altered the morphology of the samples, increased the thermal stability of some and the storage stability of all samples. Encapsulation maintained the antioxidant activity of all samples and significantly improved the antiglycation and cellular antioxidant activities of some polyphenols following SD. In conclusion, the formed inclusion complexes of ßCD with polyphenols had greater storage stability, without altering the beneficial cellular effects of the polyphenols.


Asunto(s)
Polifenoles , beta-Ciclodextrinas , Antioxidantes/química , Antioxidantes/farmacología , Células CACO-2 , Digestión , Humanos , Polifenoles/química , Polifenoles/farmacología
7.
Molecules ; 26(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500636

RESUMEN

The African pumpkin (Momordica balsamina) contains bioactive phenolic compounds that may assist in reducing oxidative stress in the human body. The leaves are mainly consumed after boiling in water for a specific time; this hydrothermal process and conditions of the gastrointestinal tract may affect the presence and bioactivity of phenolics either positively or negatively. In this study, the effects of hydrothermal processing (boiling) and in vitro simulated human digestion on the phenolic composition, bioaccessibility and bioactivity in African pumpkin were investigated in comparison with those of spinach (Spinacia oleracea). A high-resolution ultra-performance liquid chromatography, coupled with diode array detection, quadrupole time-of-flight and mass spectrometer (UPLC-DAD-QTOF-MS) was used to profile phenolic metabolites. Metabolites such as 3-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were highly concentrated in the boiled vegetable extracts compared to the raw undigested and all digested samples. The majority of African pumpkin and spinach extracts (non-digested and digested) protected Deoxyribonucleic acid (DNA), (mouse fibroblast) L929 and human epithelial colorectal adenocarcinoma (Caco-2) cells from 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. From these results, the consumption of boiled African pumpkin leaves, as well as spinach, could be encouraged, as bioactive metabolites present may reduce oxidative stress in the body.


Asunto(s)
Cucurbita/química , Digestión/efectos de los fármacos , Momordica/química , Fenoles/química , Fenoles/farmacología , Hojas de la Planta/química , Animales , Antioxidantes/química , Células CACO-2 , Línea Celular Tumoral , Flavonoides/química , Humanos , Ratones , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/química , Polifenoles/química , Ácido Quínico/análogos & derivados , Ácido Quínico/química , Spinacia oleracea/química , Verduras/química
8.
J Pept Sci ; 25(12): e3223, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713951

RESUMEN

Previously Os, a 22 amino acid sequence of a defensin from the soft tick Ornithodoros savignyi, was found to kill Gram-positive and Gram-negative bacteria at low micromolar concentrations. In this study, we evaluated synthetic peptide analogues of Os for antibacterial activity with an aim to identify minimalized active peptide sequences and in so doing obtain a better understanding of the structural requirements for activity. Out of eight partially overlapping sequences of 10 to 12 residues, only Os(3-12) and Os(11-22) exhibit activity when screened against Gram-positive and Gram-negative bacteria. Carboxyamidation of both peptides increased membrane-mediated activity, although carboxyamidation of Os(11-22) negatively impacted on activity against Staphylococcus aureus. The amidated peptides, Os(3-12)NH2 and Os(11-22)NH2 , have minimum bactericidal concentrations of 3.3 µM against Escherichia coli. Killing was reached within 10 minutes for Os(3-12)NH2 and only during the second hour for Os(11-22)NH2 . In an E. coli membrane liposome system, both Os and Os(3-12)NH2 were identified as membrane disrupting while Os(11-22)NH2 was less active, indicating that in addition to membrane permeabilization, other targets may be involved in bacterial killing. In contrast to Os, the membrane disruptive effect of Os(3-12)NH2 did not diminish in the presence of salt. Neither Os nor its amidated derivatives caused human erythrocyte haemolysis. The contrasting killing kinetics and effects of amidation together with structural and liposome leakage data suggest that the 3-12 fragment relies on a membrane disruptive mechanism while the 11-22 fragment involves additional target mechanisms. The salt-resistant potency of Os(3-12)NH2 identifies it as a promising candidate for further development.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Defensinas/farmacología , Fragmentos de Péptidos/farmacología , Amidas/química , Animales , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Defensinas/química , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Fragmentos de Péptidos/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
9.
J Pept Sci ; 22(1): 43-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26662999

RESUMEN

Antimicrobial peptides are small cationic peptides that possess a large spectrum of bioactivities, including antimicrobial, anti-inflammatory and antioxidant activities. Several antimicrobial peptides are known to inhibit lipopolysaccharide (LPS)-induced inflammation in vitro and to protect animals from sepsis. In this study, the cellular anti-inflammatory and anti-endotoxin activities of Os and Os-C, peptides derived from the carboxy-terminal of a tick defensin, were investigated. Both Os and Os-C were found to bind LPS in vitro, albeit to a lesser extent than polymyxin B and melittin, known endotoxin-binding peptides. Binding to LPS was found to reduce the bactericidal activity of Os and Os-C against Escherichia coli confirming the affinity of both peptides for LPS. At a concentration of 25 µM, the nitric oxide (NO) scavenging activity of Os was higher than glutathione, a known NO scavenger. In contrast, Os-C showed no scavenging activity. Os and Os-C inhibited LPS/IFN-γ induced NO and TNF-α production in RAW 264.7 cells in a concentration-dependent manner, with no cellular toxicity even at a concentration of 100 µM. Although inhibition of NO and TNF-α secretion was more pronounced for melittin and polymyxin B, significant cytotoxicity was observed at concentrations of 1.56 µM and 25 µM for melittin and polymyxin B, respectively. In addition, Os, Os-C and glutathione protected RAW 264.7 cells from oxidative damage at concentrations as low as 25 µM. This study identified that besides previously reported antibacterial activity of Os and Os-C, both peptides have in addition anti-inflammatory and anti-endotoxin properties.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Defensinas/química , Depuradores de Radicales Libres/farmacología , Ornithodoros/química , Péptidos/farmacología , Animales , Antibacterianos/síntesis química , Antiinflamatorios/síntesis química , Línea Celular , Defensinas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Depuradores de Radicales Libres/síntesis química , Glutatión/química , Interferón gamma/antagonistas & inhibidores , Interferón gamma/biosíntesis , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Meliteno/química , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Péptidos/síntesis química , Polimixina B/química , Estructura Terciaria de Proteína , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis
10.
Ultrastruct Pathol ; 40(2): 107-11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26986806

RESUMEN

Antibacterial activity of honey is due to the presence of methylglyoxal (MGO), H2O2, bee defensin as well as polyphenols. High MGO levels in manuka honey are the main source of antibacterial activity. Manuka honey has been reported to reduce the swarming and swimming motility of Pseudomonas aeruginosa due to de-flagellation. Due to the complexity of honey it is unknown if this effect is directly due to MGO. In this ultrastructural investigation the effects of MGO on the morphology of bacteria and specifically the structure of fimbriae and flagella were investigated. MGO effectively inhibited Gram positive (Bacillus subtilis; MIC 0.8 mM and Staphylococcus aureus; MIC 1.2 mM) and Gram negative (P. aeruginosa; MIC 1.0 mM and Escherichia coli; MIC 1.2 mM) bacteria growth. The ultrastructural effects of 0.5, 1.0 and 2 mM MGO on B. substilis and E. coli morphology was then evaluated. At 0.5 mM MGO, bacteria structure was unaltered. For both bacteria at 1 mM MGO fewer fimbriae were present and the flagella were less or absent. Identified structures appeared stunted and fragile. At 2 mM MGO fimbriae and flagella were absent while the bacteria were rounded with shrinkage and loss of membrane integrity. Antibacterial MGO causes alterations in the structure of bacterial fimbriae and flagella which would limit bacteria adherence and motility.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Piruvaldehído/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/ultraestructura , Adhesión Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/ultraestructura , Flagelos/efectos de los fármacos , Flagelos/ultraestructura , Bacterias Gramnegativas/ultraestructura , Bacterias Grampositivas/ultraestructura , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/ultraestructura
11.
J Pept Sci ; 19(5): 325-32, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23553969

RESUMEN

Tick defensins may serve as templates for the development of multifunctional peptides. The purpose of this study was to evaluate shorter peptides derived from tick defensin isoform 2 (OsDef2) in terms of their antibacterial, antioxidant, and cytotoxic activities. We compared the structural and functional properties of a synthetic peptide derived from the carboxy-terminal of the parent peptide (Os) to that of an analogue in which the three cysteine residues were omitted (Os-C). Here, we report that both peptides were bactericidal (MBC values ranging from 0.94-15 µg/ml) to both Gram-positive and Gram-negative bacteria, whereas the parent peptide only exhibited Gram-positive antibacterial activity. The Os peptide was found to be two-fold more active than Os-C against three of the four tested bacteria but equally active against Staphylococcus aureus. Os showed rapid killing kinetics against both Escherichia coli and Bacillus subtilis, whereas Os-C took longer, suggesting different modes of action. Scanning electron microscopy showed that in contrast to melittin for which blebbing of bacterial surfaces was observed, cells exposed to either peptide appeared flattened and empty. Circular dichroism data indicated that in a membrane-mimicking environment, the cysteine-containing peptide has a higher α-helical content. Both peptides were found to be non-toxic to mammalian cells. Moreover, the peptides displayed potent antioxidant activity and were 12 times more active than melittin. Multifunctional peptides hold potential for a wide range of clinical applications and further investigation into their mode of antibacterial and antioxidant properties is therefore warranted.


Asunto(s)
Defensinas/administración & dosificación , Defensinas/química , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Permeabilidad de la Membrana Celular , Dicroismo Circular , Escherichia coli/efectos de los fármacos , Humanos , Ornithodoros/química , Estructura Secundaria de Proteína , Staphylococcus aureus/efectos de los fármacos , Garrapatas/química
12.
Cancer Med ; 12(18): 18691-18701, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37644823

RESUMEN

INTRODUCTION: The activation of the kynurenine pathway in cancer progression and metastasis through immunomodulatory pathways has drawn attention to the potential for kynurenine pathway inhibition. The activation of the kynurenine pathway, which results in the production of kynurenine metabolites through the degradation of tryptophan, promotes the development of intrinsically malignant properties in cancer cells while facilitating tumour immune escape. In addition, kynurenine metabolites act as biologically active substances to promote cancer development and metastasis. METHODS: A literature review was conducted to investigate the role of the tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. RESULTS: Evidence suggests that several enzymes and metabolites implicated in the kynurenine pathway are overexpressed in various cancers. As such, the tryptophan pathway represents a promising target for cancer treatment. However, downstream signalling pathways, including aryl hydrocarbon receptor activation, have previously induced diverse biological effects in various malignancies, which resulted in either the promotion or the inhibition of metastasis. CONCLUSION: As a result, a thorough investigation of the kynurenine pathway and its regulatory mechanisms is necessary in order to properly comprehend the effects of kynurenine pathway activation involved in cancer development and metastasis.

13.
Cancer Med ; 12(13): 14387-14402, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37170733

RESUMEN

BACKGROUND: Cutaneous melanoma is a relentless form of cancer which continues to rise in incidence. Currently, cutaneous melanoma is the leading cause of skin cancer-related mortality, which can mainly be attributed to its metastatic potential. The activation of chemokine axes is a major contributor to melanoma metastasis through its involvement in promoting tumour cell migration, proliferation, survival, and adhesion. This review will focus on the role of chemokines in melanoma and possible therapeutic strategies to alter chemokine activation and subsequently inhibit the activation of signalling cascades that may promote metastasis. METHODS: A literature review was conducted to evaluate chemokines as possible therapeutic targets in metastatic melanoma. RESULTS: The crosstalk between signalling pathways and immune responses in the melanoma microenvironment resembles a complex and dynamic system. Therefore, the involvement of governing chemokine axes in the promotion of cutaneous and metastatic melanoma demands a proper understanding of the tumour microenvironment in order to identify possible targets and develop appropriate treatments against melanoma. CONCLUSION: Even though chemokine axes are regarded as promising therapeutic targets, it has become increasingly evident that chemokines can play a critical role in both tumour inhibition and promotion. The inhibition of chemokine axes to inhibit signalling cascades in target cells that regulate metastasis should, therefore, be carefully approached.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Neoplasias Cutáneas , Humanos , Melanoma/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Quimiocinas/metabolismo , Transducción de Señal , Microambiente Tumoral , Melanoma Cutáneo Maligno
14.
Int J Food Sci ; 2023: 2553197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045104

RESUMEN

The Fynbos biome, Western Cape Province, South Africa, produces a unique honey from Apis mellifera capensis. The bioactivity of Fynbos (FB1-FB6) honeys and Manuka, unique manuka factor 15+ (MAN UMF15+) honey subjected to simulated in vitro digestion, was compared. The effect of each phase of digestion on the antioxidant properties and nitric oxide- (NO-) associated immunomodulatory effects was determined. The total phenolic content of MAN (UMF15+) was higher than that of FB honeys, and following digestion, the percentage bioaccessibility (BA) was 68.6% and 87.1 ± 27.0%, respectively. With the Trolox equivalent antioxidant capacity assay, the activity of FB1 and FB6 was similar to MAN (UMF15+) but reduced for FB2, FB3, FB4, and FB5 with a %BA of 77.9% for MAN (UMF15+) and 78.2 ± 13.4% for FB. The oxygen radical absorbance capacity of MAN (UMF15+) and FB honeys was similar and unaltered with digestion. In a cellular environment, using colon adenocarcinoma (Caco-2) cells, both undigested and the gastric digested honey reduced 2,2'-azobis-(2-amidinopropane) dihydrochloride- (AAPH-) mediated peroxyl radical formation. In contrast, following gastroduodenal digestion, the formation of reactive oxygen species (ROS) was increased. In murine macrophage (RAW 264.7) cells, all honeys induced different levels of NO which was significantly increased with digestion for MAN (UMF15+) and FB1. In LPS/IFN-γ stimulated RAW 264.7 macrophages, only undigested MAN (UMF15+) effectively reduced NO levels, and with digestion, NO scavenging activity of MAN (UMF15+) was reduced but increased for FB5 and FB6. In a noncellular environment, MAN (UMF15+), FB1, FB2, and FB6 scavenged NO, and with digestion, this activity was maintained. This study has identified that undigested and gastric-digested FB honey has antioxidant properties with strong potential anticancer effects following gastroduodenal digestion, related to ROS formation. MAN (UMF15+) had anti-inflammatory effects which were lost postdigestion, and in contrast, FB5 and FB6 had anti-inflammatory effects postdigestion.

15.
Math Med Biol ; 40(3): 266-290, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669569

RESUMEN

Inhibiting a signalling pathway concerns controlling the cellular processes of a cancer cell's viability, cell division and death. Assay protocols created to see if the molecular structures of the drugs being tested have the desired inhibition qualities often show great variability across experiments, and it is imperative to diminish the effects of such variability while inferences are drawn. In this paper, we propose the study of experimental data through the lenses of a mathematical model depicting the inhibition mechanism and the activation-inhibition dynamics. The method is exemplified through assay data obtained from an experimental study of the inhibition of the chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) signalling pathway of melanoma cells. The quantitative analysis is conducted as a two step process: (i) deriving theoretically from the model the cell viability as a function of time depending on several parameters; (ii) estimating the values of the parameters by using the experimental data. The cell viability is obtained as a function of concentration of the inhibitor and time, thus providing a comprehensive characterization of the potential therapeutic effect of the considered inhibitor, e.g. $IC_{50}$ can be computed for any time point.


Asunto(s)
Neoplasias , Transducción de Señal , Línea Celular Tumoral , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacología , Neoplasias/tratamiento farmacológico
16.
ACS Omega ; 8(34): 30906-30916, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37663489

RESUMEN

The increasing incidence of hypercholesterolemia-related diseases even in the presence of the currently available cholesterol-lowering drugs indicates a need to discover new therapeutic drugs. This study aimed to investigate the hypocholesterolemic potential of two triterpenoids isolated from Protorhus longifolia stem bark. In silico techniques and in vitro enzyme assays were used to evaluate the potential inhibition of cholesterol esterase and HMG-CoA reductase by the triterpenoids (ARM-2 and RA-5). The toxicity, modulation of low-density lipoprotein (LDL) uptake, and associated gene expression were determined in HepG2 hepatocytes. In silico molecular docking revealed that ARM-2 compared with RA-5 has a relatively stronger binding affinity for both enzymes. Both triterpenoids further demonstrated promising in silico drug-likeness properties and favorable ADMET profiles characterized by high intestinal absorption and lack of CYP450 enzyme inhibition. The compounds further showed, to varying degrees of efficacy, inhibition of cholesterol micellization as well as both cholesterol esterase and HMG-CoA reductase activities with IC50 values ranging from 16.4 to 41.1 µM. Moreover, enhanced hepatic cellular LDL uptake and the associated upregulation of the LDL-R and SREBP-2 gene expression were observed in the triterpenoid-treated HepG2 cells. It is evident that the triterpenoids, especially ARM-2, possess hypocholesterolemic properties, and these molecules can serve as leads or structural templates for the development of new hypocholesterolemic drugs.

17.
Food Res Int ; 150(Pt A): 110750, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865768

RESUMEN

The effect of simulated in vitro upper gut digestion on the phenolic composition and antioxidant properties of processed cowpea beans was studied. The samples comprised four cowpea cultivars: a cream, brownish-cream and two reddish-brown cultivars. Dry cowpea seeds were soaked in water, blended into paste and deep-fried in vegetable oil. The fried samples were taken through in vitro upper gut digestion followed by freeze-drying of the supernatant. Phenolic composition of extracts from the supernatants were determined using HPLC-MS. Radical scavenging activities were documented using the TEAC, ORAC and nitric oxide (NO) assays. In vitro digestion of the processed cowpeas resulted in phenolic-peptide complexes that were identified for the first time, and decreased extractable phenolic compounds. However, the radical scavenging activities increased. The processed cowpeas and their digests inhibited cellular NO production, and oxidative DNA and cellular damage. In conclusion, deep-fried cowpeas when consumed, could potentially help alleviate oxidative stress-related conditions.


Asunto(s)
Fabaceae , Vigna , Antioxidantes , Digestión , Fenoles
18.
J Food Biochem ; 45(10): e13929, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34519069

RESUMEN

Mageu is a fermented, non-alcoholic maize-derived product unique to southern Africa. The aim of this study was to identify the health benefits of a polyphenolic extract of commercially produced mageu related to the antioxidant properties and effects on lipid accumulation in differentiated 3T3-L1 adipocytes. A pooled sample of mageu Number 1 brand (original non-flavored) was subjected to in vitro gastroduodenal digestion (GDD). Reverse phase high-performance liquid chromatography of unfractionated undigested (UD) and GDD mageu revealed that with digestion there was an increased extraction of 1.2, 1.83, 1.45, 4.86, and 3.17-fold of caffeic acid, 3,4-dihydroxybenzoic acid, p-coumaric acid, 4 hydroxybenzoic acid and ferulic acid, respectively. An associated increase in the total phenolic acid content and antioxidant activity in the <3 kDa fraction was obtained. In contrast with digestion, inhibition of advanced glycation end products formation and low-density lipoprotein oxidation was found in the <30 kDa fraction indicating the contribution of larger, possibly feruloylated polysaccharides, to activity. Cellular antioxidant activity in Caco-2 cells was >90% for all UD fractions, but with GDD was reduced. All fractions had low scavenging of nitric oxide in the lipopolysaccharide/murine cell model. Exposure of 3T3-L1 adipocytes to all the UD and GDD mageu fractions (at 1% and 10% concentrations) during differentiation resulted in at least a 35% reduction in lipid accumulation, which was not associated with a loss of cellular viability. In conclusion, mageu, UD, and subjected to GDD contains phenolic acids with beneficial bioactive properties that contribute to antioxidant activity and reduces lipid accumulation in adipocytes. PRACTICAL APPLICATIONS: Mageu is a non-alcoholic fermented maize product which when digested has increased bioactivity. Its reported health benefits are due to its caloric content therefore the practical application of this research is to validate the scientific benefits of this food and encourage increased consumption of this functional food. This is especially important in the context of the South African population where this product is widely consumed as increasing obesity is associated with an increased risk of non-communicable disease. Furthermore, as a non-alcoholic drink, consumption can be promoted for all ages' groups and religions, and a commercialized manufacture processes can be optimized to increase phenolic acid release.


Asunto(s)
Adipocitos , Antioxidantes , Células 3T3-L1 , Animales , Células CACO-2 , Humanos , Lípidos , Ratones
19.
Int J Biol Macromol ; 160: 1220-1229, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479936

RESUMEN

Type 2 diabetes is a multifactorial disease and drugs with multifunctional properties are required. The peptide, SQSPA, was reported to be a potent and gastrointestinally stable α-glucosidase inhibitory peptide. In this study, the structure-activity relationship of this peptide was studied using alanine scanning. Four analogs; AQSPA, SASPA, SQAPA and SQSAA were designed and investigated for multifunctional antidiabetic effects. Molecular docking studies on human dipeptidyl peptidase-IV (DPP-IV) suggested that the binding affinities were in the order; AQSPA>SASPA>SQSPA>SQSAA>SQAPA while for in vitro DPP-IV inhibitory activity, it was SQSPA>SQSAA>AQSPA>SASPA>SQAPA. Enzyme kinetic studies revealed that the peptides are uncompetitive inhibitors with the exception of SQSAA and SQSPA. In 3T3-L1 differentiated adipocytes, SASPA was the only analog that significantly (p < 0.05) reduced and prevented lipid accumulation and did not induce cytotoxicity to differentiated 3T3-L1 cells. All peptides, especially SASPA scavenged methylglyoxal and peroxyl radicals thereby preventing advanced glycosylated end products formation and oxidative stress. The nitric oxide scavenging activity of all peptides was comparable to IPI and glutathione. Findings indicate that the amide side chain of Q2 is probably the most critical functional group for modulating the multifunctional antidiabetic effects of SQSPA while SASPA has been identified, as a novel peptide with enhanced multifunctional antidiabetic activity.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/química , Depuradores de Radicales Libres/química , Hipoglucemiantes/química , Oligopéptidos/química , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Alanina/química , Alanina/genética , Sustitución de Aminoácidos , Animales , Sitios de Unión , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Depuradores de Radicales Libres/farmacología , Humanos , Hipoglucemiantes/metabolismo , Metabolismo de los Lípidos , Ratones , Simulación del Acoplamiento Molecular , Oligopéptidos/genética , Oligopéptidos/metabolismo , Estrés Oxidativo , Unión Proteica , Relación Estructura-Actividad
20.
Protein Pept Lett ; 26(6): 403-413, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-30919765

RESUMEN

BACKGROUND: Peptide-based therapeutics offer a unique avenue for the development of novel agents for the treatment of diabetes mellitus including α-glucosidase inhibitors. The peptide, SQSPA, was reported to possess to α -glucosidase inhibitory activity in addition to resistance to Gastrointestinal Tract (GIT) digestion. METHODS: In this study, the in silico and in vitro structure-activity analyses of the peptide was conducted using alanine scanning to identify key amino acid residues. RESULTS: The alanine scanning led to four analogs viz; AQSPA, SASPA, SQAPA and SQSAA which were GIT stable. Initially, the peptides were subjected to molecular docking on human α- glucosidase and α -amylase where the binding affinities to the enzymes were in the order; AQSPA>SASPA>SQSPA>SQAPA> SQSAA and AQSPA>SQSAA>SASPA>SQSPA> SQAPA, respectively. Hydrogen bond were important for the binding of all peptides but SASPA and AQSPA had the highest hydrogen bonds interactions with the α-glucosidase and α-amylase, respectively. In vitro analysis revealed that the α -glucosidase and α-amylase inhibitory activities of the peptides were in the order AQSPA>SQSPA>SQAPA>SASPA>SQSAA and AQSPA>SASPA> SQAPA>SQSPA>SQSAA, respectively. Using inhibition kinetics, SQSPA was a mixed inhibitor of α-glucosidase while AQSPA, SQAPA and SQSAA showed non-competitive inhibition. For α- amylase inhibition, SQSPA was a non-competitive inhibitor while AQSPA and SQSAA were mixed inhibitors; SASPA and SQAPA showed uncompetitive inhibition. CONCLUSION: The results indicated that P4 and Q2 are important requirements for the α-glucosidase and α-amylase inhibitory activities of the parent peptide, SQSPA. Furthermore, alanine scanning has led to the design of a novel α-glucosidase inhibitory peptide, AQSPA, with increased activities.


Asunto(s)
Inhibidores Enzimáticos/química , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular/métodos , Péptidos/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Sitios de Unión , Simulación por Computador , Humanos , Enlace de Hidrógeno , Cinética , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda