Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39314284

RESUMEN

Human astroviruses (HAstVs) are a leading cause of viral childhood diarrhea that infect nearly every individual during their lifetime. Although human astroviruses are highly prevalent, no approved vaccine currently exists. Antibody responses appear to play an important role in protection from HAstV infection, however knowledge about the neutralizing epitope landscape is lacking, as only 3 neutralizing antibody epitopes have previously been determined. Here, we structurally define the epitopes of 3 uncharacterized HAstV-neutralizing monoclonal antibodies: antibody 4B6 with X-ray crystallography to 2.67 Å, and antibodies 3H4 and 3B4 simultaneously with single-particle cryogenic-electron microscopy to 3.33 Å. We assess the epitope locations relative to conserved regions on the capsid spike and find that while antibodies 4B6 and 3B4 target the upper variable loop regions of the HAstV spike protein, antibody 3H4 targets a novel region near the base of the spike that is more conserved. Additionally, we found that all 3 antibodies bind with high affinity, and they compete with receptor FcRn binding to the capsid spike. These studies inform which regions of the HAstV capsid can be targeted by monoclonal antibody therapies and could aid in rational vaccine design.

2.
Biomolecules ; 13(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37509166

RESUMEN

Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.


Asunto(s)
Fusión de Membrana , Virosis , Humanos , Proteínas Virales de Fusión/química , Antivirales , Fertilización
3.
mBio ; 13(1): e0292021, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073741

RESUMEN

Retroviral elements from endogenous retroviruses have functions in mammalian physiology. The best-known examples are the envelope proteins that function in placenta development and immune suppression. Porcine endogenous retroviruses (PERVs) are an understudied class of endogenous retroviruses that infect cultured human cells, raising concern regarding porcine xenografts. The PERV envelope glycoprotein has also been proposed as a possible swine syncytin with a role in placental development. Despite the growing interest in PERVs, their envelope glycoproteins remain poorly characterized. Here, we successfully determined the postfusion crystal structure of the PERV core fusion ectodomain. The PERV fusion protein structure reveals a conserved class I viral fusion protein six-helix bundle. Biophysical experiments demonstrated that the thermodynamic stability of the PERV fusion protein secondary structure was the same at physiological and acidic pHs. A conserved surface analysis highlights the high degree of sequence conservation among retroviral fusogens in the chain reversal region that facilitates the large-scale conformational change required for membrane fusion. Further structural alignment of class I viral fusogens revealed a phylogenetic clustering that shows evolution into various lineages that correlate with virus mechanisms of cell entry. Our work indicates that structural dendrograms can be used to qualitatively infer insights into the fusion mechanisms of newly discovered class I viral fusogen structures. IMPORTANCE Class I viral fusion proteins represent a diverse group of fusogens that catalyze membrane fusion. Although structural studies have focused on those from exogenous viruses, ancient retroviral infections of germ line cells have immortalized ancient fusogens in eukaryotic genomes. These "fossilized" glycoproteins are poorly defined compared to modern fusogens. In this study, we characterized and determined the structure of the porcine endogenous retrovirus fusogen, an ancient retroviral element captured by swine. This fusion protein revealed remarkable alignment to exogenous retroviral fusion proteins, suggesting that fossil fusogens utilize similar structural determinants to perform membrane fusion. Moreover, structural phylogenetic analysis demonstrates that class I viral fusogens cluster into distinct lineages defined by mechanism of membrane fusion. Our results suggest that structural dendrograms can be used to infer mechanistic insights for uncharacterized fusion proteins.


Asunto(s)
Retrovirus Endógenos , Gammaretrovirus , Femenino , Embarazo , Humanos , Porcinos , Animales , Proteínas del Envoltorio Viral/genética , Filogenia , Placenta/metabolismo , Proteínas Virales de Fusión , Glicoproteínas , Mamíferos/metabolismo
4.
STAR Protoc ; 2(4): 100994, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34934961

RESUMEN

Dynamic monitoring of protein conformational changes is necessary to fully understand many biological processes. For example, viral entry and membrane fusion require rearrangement of its viral glycoprotein. We present a step-by-step protocol for site-specific bimane labeling of the influenza-C fusogen to map proximity and conformational movements using tryptophan-induced fluorescence quenching. This protocol is adaptable for other proteins and for protein-protein interaction detection. For complete details on the use and execution of this protocol, please refer to Serrão et al., 2021.


Asunto(s)
Espectrometría de Fluorescencia/métodos , Triptófano/química , Proteínas Virales de Fusión , Glicoproteínas/análisis , Glicoproteínas/química , Glicoproteínas/metabolismo , Gammainfluenzavirus/química , Conformación Proteica , Triptófano/metabolismo , Proteínas Virales de Fusión/análisis , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Internalización del Virus
5.
Cell Rep ; 35(7): 109152, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010634

RESUMEN

Enveloped virus entry requires the fusion of cellular and viral membranes, a process directed by their viral fusion glycoproteins. Our current knowledge of this process has been shaped by structural studies of the pre- and post-fusion conformations of these viral fusogens. These structural snapshots have revealed the start and end states necessary for fusion, but the dynamics of the intermediate conformations have remained unclear. Using the influenza C virus hemagglutinin-esterase-fusion glycoprotein as a model, we report the structural and biophysical characterization of a trapped intermediate. Crystallographic studies revealed a structural reorganization of the C terminus to create a second chain reversal region, resulting in the N and C termini being positioned in opposing directions. Intrinsic tryptophan fluorescence and bimane-induced quenching measurements suggest intermediate formation is mediated by conserved hydrophobic residues. Our study reveals a late-stage extended intermediate structural event. This work adds to our understanding of virus cell fusion.


Asunto(s)
Virus de la Influenza A/metabolismo , Proteínas Virales de Fusión/metabolismo , Humanos , Modelos Moleculares
6.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34459848

RESUMEN

Fertilization is defined as the union of two gametes. During fertilization, sperm and egg fuse to form a diploid zygote to initiate prenatal development. In mammals, fertilization involves multiple ordered steps, including the acrosome reaction, zona pellucida penetration, sperm-egg attachment, and membrane fusion. Given the success of in vitro fertilization, one would think that the mechanisms of fertilization are understood; however, the precise details for many of the steps in fertilization remain a mystery. Recent studies using genetic knockout mouse models and structural biology are providing valuable insight into the molecular basis of sperm-egg attachment and fusion. Here, we review the cell biology of fertilization, specifically summarizing data from recent structural and functional studies that provide insights into the interactions involved in human gamete attachment and fusion.


Asunto(s)
Fertilización , Fusión de Membrana , Biología Celular , Humanos
7.
Cell Host Microbe ; 28(6): 778-779, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33301717

RESUMEN

In this issue of Cell Host & Microbe, Lu et al. utilize single-molecule FRET to reveal the conformation dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, showing transitions from a closed ground state to the open receptor-accessible conformation via an on-path intermediate. These insights into spike conformations will facilitate rational immunogen design.


Asunto(s)
COVID-19/inmunología , Pandemias , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/ultraestructura , COVID-19/genética , COVID-19/virología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Conformación Proteica , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/ultraestructura
8.
Methods Mol Biol ; 2151: 159-172, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32452003

RESUMEN

Dihydrofolate reductase (DHFR) is an essential enzyme for nucleotide metabolism used to obtain energy and structural nucleic acids. Schistosoma mansoni has all the pathways for pyrimidine biosynthesis, which include the thymidylate cycle and, consequentially, the DHFR enzyme. Here, we describe the characterization of Schistosoma mansoni DHFR (SmDHFR) using isothermal titration calorimetry for the enzymatic activity and thermodynamic determination, also the folate analogs inhibition. Moreover, X-ray crystallography was used to determine the enzyme atomic model at 1.95 Å.


Asunto(s)
Schistosoma mansoni/enzimología , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Calorimetría , Cristalografía por Rayos X , Pruebas de Enzimas , Ácido Fólico/análogos & derivados , Congelación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sincrotrones , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/aislamiento & purificación
9.
Int J Biol Macromol ; 156: 18-26, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32275991

RESUMEN

The selenocysteine (Sec) incorporation is a co-translational event taking place at an in-frame UGA-codon and dependent on an organized molecular machinery. Selenium delivery requires mainly two enzymes, the selenocysteine lyase (CsdB) is essential for Sec recycling and conversion to selenide, further used by the selenophosphate synthetase (SelD), responsible for the conversion of selenide in selenophosphate. Therefore, understanding the catalytic mechanism involved in selenium compounds delivery, such as the interaction between SelD and CsdB (EcCsdB.EcSelD), is fundamental for the further comprehension of the selenocysteine synthesis pathway and its control. In Escherichia coli, EcCsdB.EcSelD interaction must occur to prevent cell death from the release of the toxic intermediate selenide. Here, we demonstrate and characterize the in vitro EcSelD.EcCsdB interaction by biophysical methods. The EcSelD.EcCsdB interaction occurs with a stoichiometry of 1:1 in presence of selenocysteine and at a low-nanomolar affinity (~1.8 nM). The data is in agreement with the small angle X-ray scattering model fitted using available structures. Moreover, yeast-2-hybrid assays supported the macromolecular interaction in the cellular environment. This is the first report that demonstrates the interaction between EcCsdB and EcSelD supporting the hypothesis that EcSelD.EcCsdB interaction is necessary to sequester the selenide during the selenocysteine incorporation pathway in Bacteria.


Asunto(s)
Liasas/química , Liasas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Selenocisteína/biosíntesis , Rastreo Diferencial de Calorimetría , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Estabilidad Proteica , Desplegamiento Proteico , Dispersión del Ángulo Pequeño , Selenio/metabolismo , Espectrometría de Fluorescencia , Termodinámica , Técnicas del Sistema de Dos Híbridos , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda