Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Front Physiol ; 15: 1347089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694205

RESUMEN

Introduction: Spaceflight is associated with severe muscular adaptations with substantial inter-individual variability. A Hill-type muscle model is a common method to replicate muscle physiology in musculoskeletal simulations, but little is known about how the underlying parameters should be adjusted to model adaptations to unloading. The aim of this study was to determine how Hill-type muscle model parameters should be adjusted to model disuse muscular adaptations. Methods: Isokinetic dynamometer data were taken from a bed rest campaign and used to perform tracking simulations at two knee extension angular velocities (30°·s-1 and 180°·s-1). The activation and contraction dynamics were solved using an optimal control approach and direct collocation method. A Monte Carlo sampling technique was used to perturb muscle model parameters within physiological boundaries to create a range of theoretical and feasible parameters to model muscle adaptations. Results: Optimal fibre length could not be shortened by more than 67% and 61% for the knee flexors and non-knee muscles, respectively. Discussion: The Hill-type muscle model successfully replicated muscular adaptations due to unloading, and recreated salient features of muscle behaviour associated with spaceflight, such as altered force-length behaviour. Future researchers should carefully adjust the optimal fibre lengths of their muscle-models when trying to model adaptations to unloading, particularly muscles that primarily operate on the ascending and descending limbs of the force-length relationship.

2.
Front Physiol ; 15: 1329765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384800

RESUMEN

Introduction: Spaceflight is associated with substantial and variable musculoskeletal (MSK) adaptations. Characterisation of muscle and joint loading profiles can provide key information to better align exercise prescription to astronaut MSK adaptations upon return-to-Earth. A case-study is presented of single-leg hopping in hypogravity to demonstrate the additional benefit computational MSK modelling has when estimating lower-limb MSK loading. Methods: A single male participant performed single-leg vertical hopping whilst attached to a body weight support system to replicate five gravity conditions (0.17, 0.25, 0.37, 0.50, 1 g). Experimental joint kinematics, joint kinetics and ground reaction forces were tracked in a data-tracking direct collocation simulation framework. Ground reaction forces, sagittal plane hip, knee and ankle net joint moments, quadriceps muscle forces (Rectus Femoris and three Vasti muscles), and hip, knee and ankle joint reaction forces were extracted for analysis. Estimated quadriceps muscle forces were input into a muscle adaptation model to predict a meaningful increase in muscle cross-sectional area, defined in (DeFreitas et al., 2011). Results: Two distinct strategies were observed to cope with the increase in ground reaction forces as gravity increased. Hypogravity was associated with an ankle dominant strategy with increased range of motion and net plantarflexor moment that was not seen at the hip or knee, and the Rectus Femoris being the primary contributor to quadriceps muscle force. At 1 g, all three joints had increased range of motion and net extensor moments relative to 0.50 g, with the Vasti muscles becoming the main muscles contributing to quadriceps muscle force. Additionally, hip joint reaction force did not increase substantially as gravity increased, whereas the other two joints increased monotonically with gravity. The predicted volume of exercise needed to counteract muscle adaptations decreased substantially with gravity. Despite the ankle dominant strategy in hypogravity, the loading on the knee muscles and joint also increased, demonstrating this provided more information about MSK loading. Discussion: This approach, supplemented with muscle-adaptation models, can be used to compare MSK loading between exercises to enhance astronaut exercise prescription.

3.
Med Eng Phys ; 129: 104185, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38906579

RESUMEN

The aim of this work is to investigate in-silico the biomechanical effects of a proximal fibular osteotomy (PFO) on a knee joint with different varus/valgus deformities on the progression of knee osteoarthritis (KOA). A finite element analysis (FEA) of a human lower extremity consisting of the femoral, tibial and fibular bones and the cartilage connecting them was designed. The FEA was performed in a static standing primitive position to determine the contact pressure (CP) distribution and the location of the center of pressure (CoP). The analysis examined the relationship between these factors and the degree of deformation of the hip-knee angle in the baseline condition. The results suggested that PFO could be a simple and effective surgical treatment for patients with associated genu varum. This work also reported that a possible CP homogenization and a CoP correction can be achieved for medial varus deformities after PFO. However, it reduced its effectiveness for tibial origin valgus misalignment and worsened in cases of femoral valgus misalignment.


Asunto(s)
Simulación por Computador , Análisis de Elementos Finitos , Articulación de la Rodilla , Osteotomía , Presión , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiopatología , Peroné/cirugía
4.
J Orthop Surg Res ; 19(1): 333, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835085

RESUMEN

BACKGROUND: Knee osteoarthritis (KOA) represents a widespread degenerative condition among adults that significantly affects quality of life. This study aims to elucidate the biomechanical implications of proximal fibular osteotomy (PFO), a proposed cost-effective and straightforward intervention for KOA, comparing its effects against traditional high tibial osteotomy (HTO) through in-silico analysis. METHODS: Using medical imaging and finite element analysis (FEA), this research quantitatively evaluates the biomechanical outcomes of a simulated PFO procedure in patients with severe medial compartment genu-varum, who have undergone surgical correction with HTO. The study focused on evaluating changes in knee joint contact pressures, stress distribution, and anatomical positioning of the center of pressure (CoP). Three models are generated for each of the five patients investigated in this study, a preoperative original condition model, an in-silico PFO based on the same original condition data, and a reversed-engineered HTO in-silico model. RESULTS: The novel contribution of this investigation is the quantitative analysis of the impact of PFO on the biomechanics of the knee joint. The results provide mechanical evidence that PFO can effectively redistribute and homogenize joint stresses, while also repositioning the CoP towards the center of the knee, similar to what is observed post HTO. The findings propose PFO as a potentially viable and simpler alternative to conventional surgical methods for managing severe KOA, specifically in patients with medial compartment genu-varum. CONCLUSION: This research also marks the first application of FEA that may support one of the underlying biomechanical theories of PFO, providing a foundation for future clinical and in-silico studies.


Asunto(s)
Simulación por Computador , Peroné , Articulación de la Rodilla , Osteoartritis de la Rodilla , Osteotomía , Presión , Humanos , Osteotomía/métodos , Osteoartritis de la Rodilla/cirugía , Osteoartritis de la Rodilla/fisiopatología , Peroné/cirugía , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/diagnóstico por imagen , Tibia/cirugía , Tibia/diagnóstico por imagen , Análisis de Elementos Finitos , Fenómenos Biomecánicos , Masculino , Femenino , Persona de Mediana Edad , Adulto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda