RESUMEN
BACKGROUND: Dengue is a global public health challenge which requires accurate diagnostic methods for surveillance and control. The gold standard for detecting dengue neutralizing antibodies (nAbs) is the plaque reduction neutralization test (PRNT), which is both labor-intensive and time-consuming. This study aims to evaluate three alternative approaches, namely, the MTT-based (or (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) microneutralization assay, the xCELLigence real-time cell analysis (RTCA), and the immuno-plaque assay-focus reduction neutralization test (iPA-FRNT). METHODS: Twenty-two residual serum samples were tested for DENV-2 nAbs using all four assays at three neutralization endpoints of 50%, 70% and 90% inhibition in virus growth. For each neutralization endpoint, results were compared using linear regression and correlation analyses. Test performance characteristics were further obtained for iPA-FRNT using 38 additional serum samples. RESULTS: Positive correlation of DENV-2 neutralization titers for the MTT-based microneutralization assay and the PRNT assay was only observed at the neutralization endpoint of 50% (r = 0.690). In contrast, at all three neutralization end points, a linear trend and positive correlation of DENV-2 neutralization titers for the xCELLigence RTCA and the PRNT assays were observed, yielding strong or very strong correlation (r = 0.829 to 0.967). This was similarly observed for the iPA-FRNT assay (r = 0.821 to 0.916), which also offered the added advantage of measuring neutralizing titers to non-plaque forming viruses. CONCLUSION: The xCELLigence RTCA and iPA-FRNT assays could serve as suitable alternatives to PRNT for dengue serological testing. The decision to adopt these methods may depend on the laboratory setting, and the utility of additional applications offered by these technologies.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus del Dengue , Dengue , Pruebas de Neutralización , Serogrupo , Ensayo de Placa Viral , Virus del Dengue/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Humanos , Pruebas de Neutralización/métodos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Ensayo de Placa Viral/métodos , Dengue/inmunología , Dengue/diagnóstico , Dengue/virologíaRESUMEN
The COVID-19 pandemic has revealed gaps in our understanding of safe, effective and efficient means of disinfecting high use public spaces. Whilst this creates an opportunity for development and application of innovative approaches such as unmanned aerial vehicle (UAV) based disinfection, unregulated outdoor disinfection using chlorine has led to environmental and public health risks. This study has quantified the efficiency, safety and efficacy of UAV-based spraying of aqueous ozone. Optimised UAV flight characteristics of 4.7 km/h at 1.7 m elevation spraying 2.4 L/min were able to provide >97% and >92% coverage of a 1 m and 2 m wide swath respectively. During spraying operations using 1 mg/L aqueous ozone, atmospheric concentrations of ozone remained within background levels (<0.04 ppm). Highly efficient inactivation of two different isolates of SARS-CoV-2 virus was achieved at aqueous ozone concentrations of 0.75 mg/L after an incubation period of only 5 min, with 0.375 mg/L achieving 82-91.5% inactivation in this time. Exposure of diamondback moth larvae and parasitic wasps to 1 mg/L aqueous ozone did not significantly affect their survivorship. These results indicate for the first time that aqueous ozone may provide the required balance between human and environmental safety and viral inactivation efficacy for targeted application in high risk outdoor settings.
Asunto(s)
COVID-19 , Desinfectantes , Ozono , Desinfección , Humanos , Pandemias , SARS-CoV-2RESUMEN
Rocio virus (ROCV) is a highly neuropathogenic mosquito-transmitted flavivirus responsible for an unprecedented outbreak of human encephalitis during 1975-1976 in Sao Paulo State, Brazil. Previous studies have shown an increased number of inflammatory macrophages in the central nervous system (CNS) of ROCV-infected mice, implying a role for macrophages in the pathogenesis of ROCV. Here, we show that ROCV infection results in increased expression of CCL2 in the blood and in infiltration of macrophages into the brain. Moreover, we show, using CCR2 knockout mice, that CCR2 expression is essential for macrophage infiltration in the brain during ROCV infection and that the lack of CCR2 results in increased disease severity and mortality. Thus, our findings show the protective role of CCR2-mediated infiltration of macrophages in the brain during ROCV infection.
Asunto(s)
Encefalitis/metabolismo , Infecciones por Flavivirus/metabolismo , Flavivirus/patogenicidad , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animales , Encéfalo , Brasil , Encefalitis/virología , Femenino , Infecciones por Flavivirus/virología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
BACKGROUND: Extracellular vesicles (EVs) are small membrane vesicles secreted by the cells that mediate intercellular transfer of molecules and contribute to transduction of various signals. Viral infection and action of pro-inflammatory cytokines has been shown to alter molecular composition of EV content. Transfer of antiviral proteins by EVs is thought to contribute to the development of inflammation and antiviral state. Altered incorporation of selected host RNAs into EVs in response to infection has also been demonstrated for several viruses, but not for WNV. Considering the medical significance of flaviviruses and the importance of deeper knowledge about the mechanisms of flavivirus-host interactions we assessed the ability of West Nile virus (WNV) and type I interferon (IFN), the main cytokine regulating antiviral response to WNV, to alter the composition of EV RNA cargo. RESULTS: We employed next generation sequencing to perform transcriptome-wide profiling of RNA cargo in EVs produced by cells infected with WNV or exposed to IFN-alpha. RNA profile of EVs secreted by uninfected cells was also determined and used as a reference. We found that WNV infection significantly changed the levels of certain host microRNAs (miRNAs), small noncoding RNAs (sncRNAs) and mRNAs incorporated into EVs. Treatment with IFN-alpha also altered miRNA and mRNA profiles in EV but had less profound effect on sncRNAs. Functional classification of RNAs differentially incorporated into EVs upon infection and in response to IFN-alpha treatment demonstrated association of enriched in EVs mRNAs and miRNAs with viral processes and pro-inflammatory pathways. Further analysis revealed that WNV infection and IFN-alpha treatment changed the levels of common and unique mRNAs and miRNAs in EVs and that IFN-dependent and IFN-independent processes are involved in regulation of RNA sorting into EVs during infection. CONCLUSIONS: WNV infection and IFN-alpha treatment alter the spectrum and the levels of mRNAs, miRNAs and sncRNAs in EVs. Differentially incorporated mRNAs and miRNAs in EVs produced in response to WNV infection and to IFN-alpha treatment are associated with viral processes and host response to infection. WNV infection affects composition of RNA cargo in EVs via IFN-dependent and IFN-independent mechanisms.
Asunto(s)
Vesículas Extracelulares/genética , Interferón-alfa/farmacología , MicroARNs/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Virus del Nilo Occidental/fisiología , Animales , Línea Celular , Vesículas Extracelulares/efectos de los fármacos , Perfilación de la Expresión Génica , HumanosRESUMEN
The family Flaviviridae consists of four genera, Flavivirus, Pestivirus, Pegivirus, and Hepacivirus, and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of the Flaviviridae viruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamics in vivo Taken together, our findings indicate that the recombinant Flaviviridae viruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals against Flaviviridae viruses.IMPORTANCE The construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinant Flaviviridae viruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable to in vitro and in vivo experiments, suggesting that these recombinant Flaviviridae viruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals against Flaviviridae viruses.
Asunto(s)
Flaviviridae/genética , Expresión Génica , Genes Reporteros , Recombinación Genética , Animales , Antivirales/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Flaviviridae/efectos de los fármacos , Genoma Viral , Hepacivirus/genética , Humanos , Ratones , Mutagénesis InsercionalRESUMEN
Rocio virus (ROCV) is an arbovirus belonging to the genus Flavivirus, family Flaviviridae. We present an updated sequence of ROCV strain SPH 34675 (GenBank: AY632542.4), the only available full genome sequence prior to this study. Using next-generation sequencing of the entire genome, we reveal substantial sequence variation from the prototype sequence, with 30 nucleotide differences amounting to 14 amino acid changes, as well as significant changes to predicted 3'UTR RNA structures. Our results present an updated and corrected sequence of a potential emerging human-virulent flavivirus uniquely indigenous to Brazil (GenBank: MF461639).
Asunto(s)
Flavivirus/clasificación , Flavivirus/genética , Genoma Viral , Secuencia de Aminoácidos , Regulación Viral de la Expresión Génica , Conformación de Ácido Nucleico , ARN Viral , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Cacipacoré virus (CPCV) is a potential emerging virus classified in the genus Flavivirus, family Flaviviridae. In the present study, we present the genetic characterization of a CPCV isolated from ticks (Amblyomma cajennense) collected from a sick capybara (Hydrochoerus hydrochaeris) in São Paulo State, Brazil. The CPCV isolate shares the typical genomic organization of flaviviruses with 10,857 nucleotides in length and a single open reading frame of 10,284 nucleotides encoding a polyprotein of 3,427 amino acids. Phylogenetic analysis revealed that CPCV is unique, as a potentially tick-borne virus, in the Japanese encephalitis virus serogroup.
Asunto(s)
Vectores Arácnidos/virología , Infecciones por Flavivirus/veterinaria , Flavivirus/genética , Flavivirus/aislamiento & purificación , Enfermedades de los Roedores/virología , Garrapatas/virología , Animales , Brasil , Flavivirus/clasificación , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Genoma Viral , Filogenia , Enfermedades de los Roedores/transmisión , Roedores , Proteínas Virales/genéticaRESUMEN
The current unprecedented outbreak of Ebola virus (EBOV) disease in West Africa has demonstrated the urgent need for a vaccine. Here, we describe the evaluation of an EBOV vaccine candidate based on Kunjin replicon virus-like particles (KUN VLPs) encoding EBOV glycoprotein with a D637L mutation (GP/D637L) in nonhuman primates. Four African green monkeys (Cercopithecus aethiops) were injected subcutaneously with a dose of 10(9) KUN VLPs per animal twice with an interval of 4 weeks, and animals were challenged 3 weeks later intramuscularly with 600 plaque-forming units of Zaire EBOV. Three animals were completely protected against EBOV challenge, while one vaccinated animal and the control animal died from infection. We suggest that KUN VLPs encoding GP/D637L represent a viable EBOV vaccine candidate.
Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Replicón/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Virus del Nilo Occidental/inmunología , África Occidental , Animales , Chlorocebus aethiops , Glicoproteínas/inmunología , Inmunización/métodos , Primates , Proteínas Virales/inmunologíaRESUMEN
Flaviviruses are a group of single-stranded, positive-sense RNA viruses that generally circulate between arthropod vectors and susceptible vertebrate hosts, producing significant human and veterinary disease burdens. Intensive research efforts have broadened our scientific understanding of the replication cycles of these viruses and have revealed several elegant and tightly co-ordinated post-translational modifications that regulate the activity of viral proteins. The three structural proteins in particular - capsid (C), pre-membrane (prM) and envelope (E) - are subjected to strict regulatory modifications as they progress from translation through virus particle assembly and egress. The timing of proteolytic cleavage events at the C-prM junction directly influences the degree of genomic RNA packaging into nascent virions. Proteolytic maturation of prM by host furin during Golgi transit facilitates rearrangement of the E proteins at the virion surface, exposing the fusion loop and thus increasing particle infectivity. Specific interactions between the prM and E proteins are also important for particle assembly, as prM acts as a chaperone, facilitating correct conformational folding of E. It is only once prM/E heterodimers form that these proteins can be secreted efficiently. The addition of branched glycans to the prM and E proteins during virion transit also plays a key role in modulating the rate of secretion, pH sensitivity and infectivity of flavivirus particles. The insights gained from research into post-translational regulation of structural proteins are beginning to be applied in the rational design of improved flavivirus vaccine candidates and make attractive targets for the development of novel therapeutics.
Asunto(s)
Proteínas de la Cápside/metabolismo , Flavivirus/fisiología , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Procesamiento Proteico-Postraduccional , Proteínas del Envoltorio Viral/metabolismo , Glicosilación , Humanos , Multimerización de Proteína , Proteolisis , Ensamble de Virus , Liberación del VirusRESUMEN
West Nile virus (WNV), a mosquito-borne flavivirus, is the major cause of arboviral encephalitis in the USA. As with other members of the Japanese encephalitis virus serogroup, WNV produces an additional non-structural protein, NS1', a C-terminal extended product of NS1 generated as the result of a -1 programmed ribosomal frameshift (PRF). We have previously shown that mutations abolishing the PRF, and consequently NS1', resulted in reduced neuroinvasiveness. However, whether this was caused by the PRF event itself or by the lack of a PRF product, NS1', or a combination of both, remains undetermined. Here, we showed that WNV NS1' formed a unique subpopulation of heat- and low-pH-stable dimers. C-terminal truncations and mutational analysis employing an NS1'-expressing plasmid showed that stability of NS1' dimers was linked to the penultimate 10 aa. To examine the role of NS1' heat-stable dimers in virus replication and pathogenicity, a stop codon mutation was introduced into NS1' to create a WNV producing a truncated version of NS1' lacking the last 20 aa, but not affecting the PRF. NS1' protein produced by this mutant virus was secreted more efficiently than WT NS1', indicating that the sequence of the last 20 aa of NS1' was responsible for its cellular retention. Further analysis of this mutant showed growth kinetics in cells and virulence in weanling mice after peripheral infection similar to the WT WNVKUN, suggesting that full-length NS1' was not essential for virus replication in vitro and for virulence in mice.
Asunto(s)
Multimerización de Proteína , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Análisis Mutacional de ADN , Concentración de Iones de Hidrógeno , Ratones , Estabilidad Proteica , Temperatura , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virologíaRESUMEN
A variant Australian West Nile virus (WNV) strain, WNVNSW2011, emerged in 2011 causing an unprecedented outbreak of encephalitis in horses in south-eastern Australia. However, no human cases associated with this strain have yet been reported. Studies using mouse models for WNV pathogenesis showed that WNVNSW2011 was less virulent than the human-pathogenic American strain of WNV, New York 99 (WNVNY99). To identify viral genes and mutations responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, we constructed chimeric viruses with substitution of large genomic regions coding for the structural genes, non-structural genes and untranslated regions, as well as seven individual non-structural gene chimeras, using a modified circular polymerase extension cloning method. Our results showed that the complete non-structural region of WNVNSW2011, when substituted with that of WNVNY99, significantly enhanced viral replication and the ability to suppress type I IFN response in cells, resulting in higher virulence in mice. Analysis of the individual non-structural gene chimeras showed a predominant contribution of WNVNY99 NS3 to increased virus replication and evasion of IFN response in cells, and to virulence in mice. Other WNVNY99 non-structural proteins (NS2A, NS4B and NS5) were shown to contribute to the modulation of IFN response. Thus a combination of non-structural proteins, likely NS2A, NS3, NS4B and NS5, is primarily responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, and accumulative mutations within these proteins would likely be required for the Australian WNVNSW2011 strain to become significantly more virulent.
Asunto(s)
Genes Virales , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología , Animales , Australia , Modelos Animales de Enfermedad , Prueba de Complementación Genética , Caballos , Humanos , Evasión Inmune , Interferón Tipo I/antagonistas & inhibidores , Ratones , Recombinación Genética , Estados Unidos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virulencia , Replicación Viral , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/crecimiento & desarrollo , Virus del Nilo Occidental/aislamiento & purificaciónRESUMEN
BACKGROUND: The human-pathogenic North American West Nile virus strain (WNVNY99), responsible for the outbreak in New York city in 1999, has caused 41000 infections and 1739 human deaths to date. A new strain of West Nile virus emerged in New South Wales, Australia in 2011 (WNVNSW2011), causing a major encephalitic outbreak in horses with close to 1000 cases and 10-15% mortality. Unexpectedly, no human cases have so far been documented. FINDINGS: We report here, using human monocyte-derived dendritic cells (MoDCs) as a model of initial WNV infection, that the pathogenic New York 99 WNV strain (WNVNY99) replicated better than WNVNSW2011, indicative of increased viral dissemination and pathogenesis in a natural infection. This was attributed to suppressed viral replication and type I interferon (IFN) response in the early phase of WNVNY99 infection, leading to enhanced viral replication at the later phase of infection. In addition, WNVNY99 induced significantly more pro-inflammatory cytokines in MoDCs compared to WNVNSW2011. CONCLUSIONS: Our results suggest that the observed differences in replication and induction of IFN response between WNVNY99 and WNVNSW2011 in MoDCs may be indicative of their difference in virulence for humans.
Asunto(s)
Células Dendríticas/virología , Replicación Viral , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/fisiología , Animales , Células Cultivadas , Humanos , Interferones/metabolismo , Virulencia , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/crecimiento & desarrollo , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/patogenicidadRESUMEN
BACKGROUND: Amino acid substitutions I22V and L72S in the prM protein of West Nile virus Kunjin strain (WNVKUN) were previously shown to enhance virus secretion and virulence, but a mechanism by which this occurred was not determined. FINDINGS: Using pulse-chase experiments followed by co-immunoprecipitation with anti-E antibody, we demonstrated that the I22V and L72S substitutions enhanced prM/E heterodimerization for both the E-glycosylated and E-unglycosylated virus. Furthermore, analysis of secreted particles revealed that I22V and L72S substitutions also enhanced nucleocapsid incorporation. CONCLUSIONS: We have demonstrated mechanistically that improved secretion of virus particles in the presence of I22V and L72S substitutions was contributed by more efficient prM/E heterodimerization.
Asunto(s)
Multimerización de Proteína , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Liberación del Virus , Virus del Nilo Occidental/fisiología , Sustitución de Aminoácidos , Animales , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Virus del Nilo Occidental/genéticaRESUMEN
Trichodysplasia spinulosa is a rare polyomavirus-associated cutaneous eruption occurring in the setting of immunosuppression. Clinically it is characterised by multiple centrofacial folliculocentric papules with spinous protuberances. The histopathology is distinct and treatment with antiviral agents appears to be the most effective.
Asunto(s)
Dermatosis Facial/patología , Dermatosis Facial/virología , Enfermedades del Cabello/patología , Enfermedades del Cabello/virología , Folículo Piloso/patología , Infecciones por Polyomavirus/complicaciones , Femenino , Humanos , Huésped Inmunocomprometido , Persona de Mediana Edad , Poliomavirus/genética , Poliomavirus/aislamiento & purificación , Infecciones por Polyomavirus/virologíaRESUMEN
The identification of four potential nonstructural 5 (NS5) residues-K28, K45, V335, and S749-that share the same amino acid preference in STAT2-interacting flaviviruses [Dengue virus (DENV) and Zika virus (ZIKV)], but not in STAT2-non-interacting flaviviruses [West Nile virus (WNV) and/or Yellow fever virus (YFV)] from an alignment of multiple flavivirus NS5 sequences, implied a possible association with the efficiency of ZIKV to antagonize the human signal transducer and activator of transcription factor 2 (STAT2). Through site-directed mutagenesis and reverse genetics, mutational impacts of these residues on ZIKV growth in vitro and STAT2 antagonism were assessed using virus growth kinetics assays and STAT2 immunoblotting. The results showed that mutations at the residue K28 significantly reduced the efficiency of ZIKV to antagonize STAT2. Further investigation involving residue K28 demonstrated its additional effects on the phenotypes of ZIKV-NS5 nuclear bodies. These findings demonstrate that K28, identified from sequence alignment, is an important determinant of replication and STAT2 antagonism by ZIKV.
RESUMEN
The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/µL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/µL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.
Asunto(s)
Virus del Dengue , Dengue , Humanos , Dengue/diagnóstico , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Prueba de Diagnóstico Rápido , Recombinasas , Sensibilidad y Especificidad , SerogrupoRESUMEN
Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.
Asunto(s)
Enfermedades Transmisibles , Virus de la Encefalitis Transmitidos por Garrapatas , Humanos , Glicosilación , Genética Inversa , PielRESUMEN
The widespread COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) necessitated measures aimed at preventing the spread of SARS-CoV-2. To mitigate the risk of fomite-mediated transmission, environmental cleaning and disinfection regimes have been widely implemented. However, conventional cleaning approaches such as surface wipe downs can be laborious and more efficient and effective disinfecting technologies are needed. Gaseous ozone disinfection is one technology which has been shown to be effective in laboratory studies. Here, we evaluated its efficacy and feasibility in a public bus setting, using murine hepatitis virus (a related betacoronavirus surrogate) and the bacteria Staphylococcus aureus as test organisms. An optimal gaseous ozone regime resulted in a 3.65-log reduction of murine hepatitis virus and a 4.73-log reduction of S. aureus, and decontamination efficacy correlated with exposure duration and relative humidity in the application space. These findings demonstrated gaseous ozone disinfection in field settings which can be suitably translated to public and private fleets that share analogous characteristics.
Asunto(s)
Antiinfecciosos , COVID-19 , Ozono , Ratones , Animales , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Descontaminación/métodos , Staphylococcus aureus , Pandemias/prevención & control , Desinfección/métodosRESUMEN
We conducted a prospective environmental surveillance study to investigate the air, surface, dust, and water contamination of a room occupied by a patient infected with mpox virus (MPXV) at various stages of the illness. The patient tested positive for MPXV from a throat swab and skin lesions. Environmental sampling was conducted in a negative pressure room with 12 unidirectional high efficiency particulate air filter (HEPA) air changes per hour and daily cleaning of the surfaces. A total of 179 environmental samples were collected on days 7, 8, 13, and 21 of illness. Among the days of sampling, air, surface, and dust contamination showed the highest contamination rates on day 7 and 8 of illness, with a gradual decline to the lowest contamination level by day 21. Viable MPXV was isolated from surfaces and dust samples and no viable virus was isolated from the air and water samples.
Asunto(s)
Monkeypox virus , Habitaciones de Pacientes , Humanos , Polvo , Monkeypox virus/aislamiento & purificación , Estudios Prospectivos , AguaRESUMEN
During 2015-2016, outbreaks of Zika virus (ZIKV) occurred in Southeast Asia and the Americas. Most ZIKV infections in humans are asymptomatic, while clinical manifestation is usually a self-limiting febrile disease with maculopapular rash. However, ZIKV is capable of inducing a range of severe neurological complications collectively described as congenital Zika syndrome (CZS). Notably, the scale and magnitude of outbreaks in Southeast Asia were significantly smaller compared to those in the Americas. Sequence comparison between epidemic-associated ZIKV strains from Southeast Asia with those from the Americas revealed a methionine to valine substitution at residue position 114 of the NS5 protein (NS5-M114V) in all the American isolates. Using an American isolate of ZIKV (Natal), we investigated the impact of NS5-M114V mutation on virus replication in cells, virulence in interferon (IFN) α/ß receptor knockout (Ifnar-/-) mice, as well as replication and transmission potential in Aedes aegypti mosquitoes. We demonstrated that NS5-M114V mutation had insignificant effect on ZIKV replication efficiency in cells, its ability to degrade STAT2, and virulence in vivo, albeit viremia was slightly prolonged in mice. Furthermore, NS5-M114V mutation decreased mosquito infection and dissemination rates but had no effect on virus secretion into the saliva. Taken together, our findings support the notion that NS5-M114V mutation is unlikely to be a major determinant for virus replication and transmission potential.