Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Org Biomol Chem ; 18(31): 6147-6154, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32719836

RESUMEN

G-quadruplexes (G4) represent one class of non-canonical secondary nucleic acid structures that are currently regarded as promising and attractive targets for anti-cancer, anti-viral and antibacterial therapy. Herein, we probe a new i-clamp-inspired phenoxazine scaffold for designing G4-stabilizing ligands. The length of the protonated aminoalkyl tethers ('arms') of the phenoxazine-based ligand was optimized in silico. Two double-armed ligands differing in the relative orientation of their arms and one single-armed ligand were synthesized. The two-armed ligands significantly enhanced the thermal stability of the G-quadruplex structures (increasing the melting temperature by up to 20 °C) and displayed G4 selectivity over duplex DNA. The ligands look promising for biological studies and the phenoxazine scaffold could be a starting point for designing new G4-interacting compounds.

2.
Biosens Bioelectron ; 175: 112864, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309217

RESUMEN

We report the design of robust sensors for measuring intracellular pH, based on the native DNA i-motifs (iMs) found in neurodegeneration- or carcinogenesis-related genes. Those iMs appear to be genomic regulatory elements and might modulate transcription in response to pH stimuli. Given their intrinsic sensitivity to minor pH changes within the physiological range, such noncanonical DNA structures can be used as sensor core elements without additional modules other than fluorescent labels or quenchers. We focused on several iMs that exhibited fast folding/unfolding kinetics. Using stopped-flow techniques and FRET-melting/annealing assays, we confirmed that the rates of temperature-driven iM-ssDNA transitions correlate with the rates of the pH-driven transitions. Thus, we propose FRET-based hysteresis analysis as an express method for selecting sensors with desired kinetic characteristics. For the leading fast-response sensor, we optimized the labelling scheme and performed intracellular calibration. Unlike the commonly used small-molecule pH indicators, that sensor was transferred efficiently to cell nuclei. Considering its favourable kinetic characteristics, the sensor can be used for monitoring proton dynamics in the nucleus. These results argue that the 'genome-inspired' design is a productive approach to the development of biocompatible molecular tools.


Asunto(s)
Técnicas Biosensibles , ADN/genética , Genómica , Concentración de Iones de Hidrógeno , Cinética , Motivos de Nucleótidos , Termodinámica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda