Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143206

RESUMEN

Fasting is associated with a range of health benefits1-6. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting7,8. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source9,10 that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.

2.
Metabolomics ; 20(2): 36, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446263

RESUMEN

INTRODUCTION: Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE: To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS: We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS: Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION: Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.


Asunto(s)
Enfermedades Mitocondriales , Sepsis , Choque Séptico , Humanos , Aminoácidos , N-Formilmetionina , Metabolómica , Metionina , Ácido Láctico , Racemetionina
3.
Respir Care ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079724

RESUMEN

BACKGROUND: Beneficial effects of breathing at FIO2 < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with FIO2 as low as 0.11 in 5 healthy volunteers. METHODS: All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from FIO2 of 0.16 on the first day to FIO2 of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' SpO2 , heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments. RESULTS: Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased SpO2 and increased heart rate. At FIO2 of 0.14, the mean SpO2 was 92%; at FIO2 of 0.13, the mean SpO2 was 93%; at FIO2 of 0.12, the mean SpO2 was 88%; at FIO2 of 0.11, the mean SpO2 was 85%; and, finally, at an FIO2 of 0.21, the mean SpO2 was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension. CONCLUSIONS: Results of the current physiologic study suggests that, within a hospital setting, delivering FIO2 as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested.

4.
Res Sq ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854072

RESUMEN

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof. T-independent BCR/TLR9 co-stimulation, which drives malignant and autoimmune B-cell states, jointly induced PD-L1 plasma membrane expression, supported by NAD metabolism and oxidative phosphorylation. BCR/TLR9 also highly induced the transaminase BCAT1, which localized to lysosomal membranes to support branched chain amino acid synthesis and mTORC1 hyperactivation. BCAT1 inhibition blunted BCR/TLR9, but not CD40L/IL4-triggered B-cell proliferation, IL10 expression and BCR/TLR pathway-driven lymphoma xenograft outgrowth. These results provide a valuable resource, reveal receptor-mediated immunometabolism remodeling to support key B-cell phenotypes including PD-L1 checkpoint signaling, and identify BCAT1 as a novel B-cell therapeutic target.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39109797

RESUMEN

INTRODUCTION: Friedreich's Ataxia (FRDA) is a multi-system disorder caused by frataxin deficiency. FRDA-related diabetes mellitus (DM) is common. Frataxin supports skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity, a mediator of insulin sensitivity. Our objective was to test the association between skeletal muscle health and insulin sensitivity and secretion in adults with FRDA without DM. METHODS: Case-control study (NCT02920671). Glucose and insulin metabolism (stable-isotope oral glucose tolerance tests), body composition (dual-energy x-ray absorptiometry), physical activity (self-report), and skeletal muscle OXPHOS capacity (creatine chemical exchange saturation transfer MRI) were assessed. RESULTS: Participants included 11 individuals with FRDA (4 female), median age 27y (IQR 23, 39), BMI 26.9kg/m2 (24.1, 29.4), and 24 controls (11 female), 29y (26, 39), 24.4kg/m2 (21.8, 27.0). Fasting glucose was higher in FRDA (91 vs. 83mg/dL (5.0 vs. 4.6mmol/L), p<0.05). Individuals with FRDA had lower insulin sensitivity (WBISI 2.8 vs. 5.3, p<0.01), higher post-prandial insulin secretion (insulin secretory rate iAUC 30-180 minutes, 24,652 vs. 17,858, p<0.05), and more suppressed post-prandial endogenous glucose production (-0.9% vs. 26.9% of fasting EGP, p<0.05). In regression analyses, lower OXPHOS and inactivity explained some of the difference in insulin sensitivity. More visceral fat contributed to lower insulin sensitivity independent of FRDA. Insulin secretion accounting for sensitivity (disposition index) was not different. CONCLUSIONS: Lower mitochondrial OXPHOS capacity, inactivity, and visceral adiposity contribute to lower insulin sensitivity in FRDA. Higher insulin secretion appears compensatory, and when inadequate, could herald DM. Further studies are needed to determine if muscle- or adipose-focused interventions could delay FRDA-related DM.

6.
J Clin Invest ; 134(11)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662454

RESUMEN

Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.


Asunto(s)
Empalme Alternativo , Glioma , Proteína de Unión al Tracto de Polipirimidina , Glioma/genética , Glioma/patología , Glioma/metabolismo , Glioma/terapia , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Animales , Ratones , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Adulto , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
7.
Cell Metab ; 36(1): 144-158.e7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101397

RESUMEN

Common genetic variants in glucokinase regulator (GCKR), which encodes GKRP, a regulator of hepatic glucokinase (GCK), influence multiple metabolic traits in genome-wide association studies (GWASs), making GCKR one of the most pleiotropic GWAS loci in the genome. It is unclear why. Prior work has demonstrated that GCKR influences the hepatic cytosolic NADH/NAD+ ratio, also referred to as reductive stress. Here, we demonstrate that reductive stress is sufficient to activate the transcription factor ChREBP and necessary for its activation by the GKRP-GCK interaction, glucose, and ethanol. We show that hepatic reductive stress induces GCKR GWAS traits such as increased hepatic fat, circulating FGF21, and circulating acylglycerol species, which are also influenced by ChREBP. We define the transcriptional signature of hepatic reductive stress and show its upregulation in fatty liver disease and downregulation after bariatric surgery in humans. These findings highlight how a GCKR-reductive stress-ChREBP axis influences multiple human metabolic traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glucoquinasa , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Factores de Transcripción/metabolismo
8.
Hepatol Commun ; 8(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180987

RESUMEN

BACKGROUND: Mitochondrial hepatopathies (MHs) are primary mitochondrial genetic disorders that can present as childhood liver disease. No recognized biomarkers discriminate MH from other childhood liver diseases. The protein biomarkers growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21) differentiate mitochondrial myopathies from other myopathies. We evaluated these biomarkers to determine if they discriminate MH from other liver diseases in children. METHODS: Serum biomarkers were measured in 36 children with MH (17 had a genetic diagnosis); 38 each with biliary atresia, α1-antitrypsin deficiency, and Alagille syndrome; 20 with NASH; and 186 controls. RESULTS: GDF15 levels compared to controls were mildly elevated in patients with α1-antitrypsin deficiency, Alagille syndrome, and biliary atresia-young subgroup, but markedly elevated in MH (p<0.001). FGF21 levels were mildly elevated in NASH and markedly elevated in MH (p<0.001). Both biomarkers were higher in patients with MH with a known genetic cause but were similar in acute and chronic presentations. Both markers had a strong performance to identify MH with a molecular diagnosis with the AUC for GDF15 0.93±0.04 and for FGF21 0.90±0.06. Simultaneous elevation of both markers >98th percentile of controls identified genetically confirmed MH with a sensitivity of 88% and specificity of 96%. In MH, independent predictors of survival without requiring liver transplantation were international normalized ratio and either GDF15 or FGF21 levels, with levels <2000 ng/L predicting survival without liver transplantation (p<0.01). CONCLUSIONS: GDF15 and FGF21 are significantly higher in children with MH compared to other childhood liver diseases and controls and, when combined, were predictive of MH and had prognostic implications.


Asunto(s)
Síndrome de Alagille , Atresia Biliar , Factor 15 de Diferenciación de Crecimiento , Enfermedad del Hígado Graso no Alcohólico , Niño , Humanos , Síndrome de Alagille/diagnóstico , Atresia Biliar/diagnóstico , Biomarcadores , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/química , Enfermedades Mitocondriales/diagnóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda