RESUMEN
BACKGROUND: Ganzi Prefecture in Western China is situated geographically at the transition regions between Tibetan Plateau and Sichuan Basin in a highly tectonically active boundary area between the India and Eurasia plates. The region hosts various hot springs that span a wide range of temperature from 30 to 98 °C and are located at high altitude (up to 4200 m above sea level) in the region of large geothermal anomalies and active Xianshuihe slip-fault that has been active since Holocene. The site represents a biodiversity reservoir for thermophiles, yet their diversity and relationship to geochemical parameters are largely unknown. In the present work, bacterial diversity and community structure in 14 hot springs of Ganzi were investigated using Illumina MiSeq sequencing. RESULTS: Bacterial community compositions were evidently distinct among the 14 hot springs, and the bacterial communities in hot springs were majorly abundant in phyla Aquificae, Cyanobacteria and Proteobacteria. Both clustering and PCoA analysis suggested the existence of four bacterial community patterns in these hot springs. Temperature contributed to shaping bacterial community structure of hot springs as revealed by correlation analysis. Abundant unassigned-genus sequences detected in this study strongly implied the presence of novel genera or genetic resources in these hot springs. CONCLUSION: The diversity of hot springs of Ganzi prefecture in Western Sichuan, China is evidently shaped by temperature. Interestingly disproportionally abundant unassigned-genus sequences detected in this study show indicate potential of novel genera or phylotypes. We hypothesize that frequent earthquakes and rapidly changing environment might have contributed to evolution of these potentially new lineages. Overall, this study provided first insight into the bacterial diversity of hot springs located in Western Sichuan, China and its comparison with other similar communities worldwide.
Asunto(s)
Bacterias/clasificación , Variación Genética , Manantiales de Aguas Termales/microbiología , Calor , Consorcios Microbianos , Microbiología del Agua , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , China , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Thermoleptolyngbya is a newly proposed genus of thermophilic cyanobacteria that are often abundant in thermal environments. However, a vast majority of Thermoleptolyngbya strains were not systematically identified, and genomic features of this genus are also sparse. Here, polyphasic approaches were employed to identify a thermophilic strain, PKUAC-SCTA183 (A183 hereafter), isolated from hot spring Erdaoqiao, Ganzi prefecture, China. Whole-genome sequencing of the strain revealed its allocation to Thermoleptolyngbya sp. and genetic adaptations to the hot spring environment. While the results of 16S rRNA were deemed inconclusive, the more comprehensive polyphasic approach encompassing phenetic, chemotaxic, and genomic approaches strongly suggest that a new taxon, Thermoleptolyngbya sichuanensis sp. nov., should be delineated around the A183 strain. The genome-scale phylogeny and average nucleotide/amino-acid identity confirmed the genetic divergence of the A183 strain from other strains of Thermoleptolyngbya along with traditional methods such as 16S-23S ITS and its secondary structure analyses. Comparative genomic and phylogenomic analyses revealed inconsistent genome structures between Thermoleptolyngbya A183 and O-77 strains. Further gene ontology analysis showed that the unique genes of the two strains were distributed in a wide range of functional categories. In addition, analysis of genes related to thermotolerance, signal transduction, and carbon/nitrogen/sulfur assimilation revealed the ability of this strain to adapt to inhospitable niches in hot springs, and these findings were preliminarily confirmed using experimental, cultivation-based approaches.
RESUMEN
Many species of microalgae have been used as source of nutrient rich food, feed, and health promoting compounds. Among the commercially important microalgae, Haematococcus pluvialis is the richest source of natural astaxanthin which is considered as "super anti-oxidant." Natural astaxanthin produced by H. pluvialis has significantly greater antioxidant capacity than the synthetic one. Astaxanthin has important applications in the nutraceuticals, cosmetics, food, and aquaculture industries. It is now evident that, astaxanthin can significantly reduce free radicals and oxidative stress and help human body maintain a healthy state. With extraordinary potency and increase in demand, astaxanthin is one of the high-value microalgal products of the future.This comprehensive review summarizes the most important aspects of the biology, biochemical composition, biosynthesis, and astaxanthin accumulation in the cells of H. pluvialis and its wide range of applications for humans and animals. In this paper, important and recent developments ranging from cultivation, harvest and postharvest bio-processing technologies to metabolic control and genetic engineering are reviewed in detail, focusing on biomass and astaxanthin production from this biotechnologically important microalga. Simultaneously, critical bottlenecks and major challenges in commercial scale production; current and prospective global market of H. pluvialis derived astaxanthin are also presented in a critical manner. A new biorefinery concept for H. pluvialis has been also suggested to guide toward economically sustainable approach for microalgae cultivation and processing. This report could serve as a useful guide to present current status of knowledge in the field and highlight key areas for future development of H. pluvialis astaxanthin technology and its large scale commercial implementation.