Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Mov Disord ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962844

RESUMEN

OBJECTIVE: Parkinson's disease (PD) hampers visual search tasks such as reading, driving, and navigation. We examined expectations from past experiences, guiding cognition and contextual priors, on visual search in PD. METHODS: We compared eye movements as PD and healthy participants searched for a hidden object (target) in cluttered real-world scenes. RESULTS: PD participants prolonged fixation on high-probability (high-prior) locations for the target, consistent across expected and unexpected scenario. Such emphasis on contextual visual priors, evidenced by high fixation duration on high-probability areas, was beneficial when the target was at the expected location but presented challenges when the target was situated in an unlikely place. CONCLUSION: This study contributes to understanding how PD impacts visual search behavior and cognitive processing. The findings indicate that PD alters attention allocation and visual processing by affecting the utilization of contextual visual priors. It provides insights for potential interventions targeting visuo-cognitive deficits in PD patients. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

2.
Cerebellum ; 23(2): 554-569, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37308757

RESUMEN

Perception of our linear motion - heading - is critical for postural control, gait, and locomotion, and it is impaired in Parkinson's disease (PD). Deep brain stimulation (DBS) has variable effects on vestibular heading perception, depending on the location of the electrodes within the subthalamic nucleus (STN). Here, we aimed to find the anatomical correlates of heading perception in PD. Fourteen PD participants with bilateral STN DBS performed a two-alternative forced-choice discrimination task where a motion platform delivered translational forward movements with a heading angle varying between 0 and 30° to the left or to the right with respect to the straight-ahead direction. Using psychometric curves, we derived the heading discrimination threshold angle of each patient from the response data. We created patient-specific DBS models and calculated the percentages of stimulated axonal pathways that are anatomically adjacent to the STN and known to play a major role in vestibular information processing. We performed correlation analyses to investigate the extent of these white matter tracts' involvement in heading perception. Significant positive correlations were identified between improved heading discrimination for rightward heading and the percentage of activated streamlines of the contralateral hyperdirect, pallido-subthalamic, and subthalamo-pallidal pathways. The hyperdirect pathways are thought to provide top-down control over STN connections to the cerebellum. In addition, STN may also antidromically activate collaterals of hyperdirect pathway that projects to the precerebellar pontine nuclei. In select cases, there was strong activation of the cerebello-thalamic projections, but it was not consistently present in all participants. Large volumetric overlap between the volume of tissue activation and the STN in the left hemisphere positively impacted rightward heading perception. Altogether, the results suggest heavy involvement of basal ganglia cerebellar network in STN-induced modulation of vestibular heading perception in PD.


Asunto(s)
Estimulación Encefálica Profunda , Percepción de Movimiento , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiología , Tálamo
3.
Cerebellum ; 23(2): 838-855, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36991252

RESUMEN

Immune-mediated cerebellar ataxias (IMCAs) have diverse etiologies. Patients with IMCAs develop cerebellar symptoms, characterized mainly by gait ataxia, showing an acute or subacute clinical course. We present a novel concept of latent autoimmune cerebellar ataxia (LACA), analogous to latent autoimmune diabetes in adults (LADA). LADA is a slowly progressive form of autoimmune diabetes where patients are often initially diagnosed with type 2 diabetes. The sole biomarker (serum anti-GAD antibody) is not always present or can fluctuate. However, the disease progresses to pancreatic beta-cell failure and insulin dependency within about 5 years. Due to the unclear autoimmune profile, clinicians often struggle to reach an early diagnosis during the period when insulin production is not severely compromised. LACA is also characterized by a slowly progressive course, lack of obvious autoimmune background, and difficulties in reaching a diagnosis in the absence of clear markers for IMCAs. The authors discuss two aspects of LACA: (1) the not manifestly evident autoimmunity and (2) the prodromal stage of IMCA's characterized by a period of partial neuronal dysfunction where non-specific symptoms may occur. In order to achieve an early intervention and prevent cell death in the cerebellum, identification of the time-window before irreversible neuronal loss is critical. LACA occurs during this time-window when possible preservation of neural plasticity exists. Efforts should be devoted to the early identification of biological, neurophysiological, neuropsychological, morphological (brain morphometry), and multimodal biomarkers allowing early diagnosis and therapeutic intervention and to avoid irreversible neuronal loss.


Asunto(s)
Ataxia Cerebelosa , Diabetes Mellitus Tipo 2 , Insulinas , Adulto , Humanos , Ataxia Cerebelosa/terapia , Consenso , Cerebelo , Autoanticuerpos
4.
Mov Disord ; 38(11): 2116-2121, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914913

RESUMEN

BACKGROUND: Cervical dystonia (CD) is an intricate neurological condition with motor and nonmotor symptoms. These include disruptions in visual perception, self-orientation, visual working memory, and vestibular functions. However, the specific impact of CD on perceiving self-motion direction, especially with isolated visual or vestibular stimuli, remains largely unexplored. OBJECTIVE: This study aimed to examine the effects of CD on linear motion perception, hypothesizing impaired heading discrimination in both vestibular and visual tasks, and that such deficits correlate with the disease severity. METHODS: We employed a cutting-edge motion platform to precisely control whole-body linear motion. Through repeated two-alternative forced-choice tasks, we assessed vestibular heading direction discrimination. Participants observed dynamic star clouds in immersive virtual reality and indicated their perceived self-motion direction, evaluating visual heading direction discrimination. Sensitivity to direction variations and response accuracy errors were analyzed using robust Gaussian cumulative distribution psychometric functions. RESULTS: Heading perception is impaired in individuals with CD, particularly evident in vestibular heading discrimination. CD severity correlated with elevated thresholds for both vestibular and visual heading discrimination. Surprisingly, lateralized CD did not introduce bias in either system, suggesting widespread disruption over localized effects. CONCLUSIONS: Contrary to previous beliefs, our findings challenge the idea that CD-related heading discrimination issues mainly arise from peripheral vestibular effects. Instead, abnormal proprioceptive input from dystonic neck muscles introduces noise into the central mechanism integrating visual, vestibular, and proprioceptive signals. These insights into spatial navigation deficits have implications for future CD research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Percepción de Movimiento , Navegación Espacial , Tortícolis , Vestíbulo del Laberinto , Humanos , Estimulación Luminosa , Percepción de Movimiento/fisiología , Percepción Visual , Vestíbulo del Laberinto/fisiología
5.
Mov Disord ; 38(11): 2094-2102, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37702261

RESUMEN

BACKGROUND: There is a growing body of evidence suggesting that botulinum toxin can alter proprioceptive feedback and modulate the muscle-spindle output for the treatment of dystonia. However, the mechanism for this modulation remains unclear. METHODS: We conducted a study involving 17 patients with cervical dystonia (CD), seven of whom had prominent CD and 10 with generalized dystonia (GD) along with CD. We investigated the effects of neck vibration, a form of proprioceptive modulation, on spontaneous single-neuron responses and local field potentials (LFPs) recorded from the globus pallidum externus (GPe) and internus (GPi). RESULTS: Our findings demonstrated that neck vibration notably increased the regularity of neck-sensitive GPi neurons in focal CD patients. Additionally, in patients with GD and CD, the vibration enhanced the firing regularity of non-neck-sensitive neurons. These effects on single-unit activity were also mirrored in ensemble responses measured through LFPs. Notably, the LFP modulation was particularly pronounced in areas populated with burst neurons compared to pause or tonic cells. CONCLUSION: The results from our study emphasize the significance of burst neurons in the pathogenesis of dystonia and in the efficacy of proprioceptive modulation for its treatment. Moreover, we observed that the effects of vibration on focal CD were prominent in the α band LFP, indicating modulation of pallido-cerebellar connectivity. Moreover, the pallidal effects of vibration in GD with CD involved modulation of cerebro-pallidal θ band connectivity. Our analysis provides insight into how vibration-induced changes in pallidal activity are integrated into the downstream motor circuit. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Distónicos , Tortícolis , Humanos , Tortícolis/tratamiento farmacológico , Tortícolis/patología , Globo Pálido/patología , Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/terapia , Cuello
6.
Cerebellum ; 22(4): 527-530, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35881321

RESUMEN

Clear vision requires accurate gaze shift from one object to the other and steadily maintaining it when eyes are at the target. The rapid gaze shifts are assured by the high-frequency burst in the brainstem neuronal firing, the mechanism relying on the tight cerebellar supervision. The cerebellar oversight is equally essential for maintaining gaze on the object of interest. The cerebellar significance on the motor control of gaze and the consequences of cerebellar illness are known for almost three quarters of the century - since David Cogan published the classic paper titled "Ocular Dysmetria, Flutter Like Oscillations of the Eyes, and Opsoclonus." In this classic series of cases, three disorders of gaze shifting and gaze holding were described in a number of etiologies, ultimately manifesting in a final common pathway involving the cerebellum. Since the 1950s, there had been substantial progress in contemporary neurology, experimental neuroscience literature has expanded, and computational models of ocular motor control have flourished in the field. In this short commentary, I will highlight Cogan's cerebellar classic in the context of contemporary research on motor control of saccades.


Asunto(s)
Ataxia Cerebelosa , Nistagmo Patológico , Trastornos de la Motilidad Ocular , Humanos , Movimientos Sacádicos , Movimientos Oculares , Cerebelo/fisiología , Trastornos de la Motilidad Ocular/etiología
7.
Cerebellum ; 21(1): 19-22, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35088299

RESUMEN

Highly contagious pandemic due to novel coronavirus SARS-CoV-2, COVID-19 has significantly affected humankind. At the onset of the pandemic, it was believed that it primarily affects the respiratory and hematological system, and has minimal influence on the human brain, even less so on the cerebellum. It was thought that the effects of a pandemic on cerebellar disorders would be the same as it would affect any other chronic neurological disease. It turned out that our understanding of the effects of COVID-19 on the cerebellar system was premature. Over the last 2 years, we appreciated many diverse and direct effects of COVID-19 on cerebellar function. SARS-CoV-2 affects the cerebellum via direct viral invasion, but even more so through its effects on immune, hematological, and metabolic pathways. Increasing evidence suggested the indirect effects of COVID-19 on preexisting chronic cerebellar disease due to lack of in-person care and social isolation. This editorial concisely summarizes critical literature on COVID-19 and the cerebellum published over the last 2 years.


Asunto(s)
COVID-19 , Cerebelo , Enfermedades del Sistema Nervioso , COVID-19/fisiopatología , Cerebelo/fisiopatología , Humanos , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/fisiopatología , Pandemias , SARS-CoV-2
8.
Cerebellum ; 21(1): 55-63, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33977497

RESUMEN

The variability in motor dysfunction is not uncommon in autoimmune disorders. Antibody-mediated system-wide malfunction or effects on the neural network shared by two independent pathophysiological processes can cause such heterogeneity. We tested this prediction for motor dysfunction during gaze holding in 11 patients with increased titers of glutamic acid decarboxylase (anti-GAD) antibody. High-resolution oculography measured horizontal and vertical eye positions. The analysis was performed with customized signal processing algorithms. Downbeat and gaze-evoked nystagmus commonly coexisted; one patient had a combination of upbeat and gaze-evoked nystagmus. The nystagmus was associated with saccadic intrusions in 10 patients; all had squarewaves, but five also had saccadic oscillations. The nystagmus and saccadic intrusions, both in the same axis of eye rotations, were not uncommon. Tandem appearance of the episodes of nystagmus and saccadic intrusions suggested a coupling between the two abnormalities. We speculated a unifying framework where the anti-GAD antibody inhibited (GAD mediated) conversion of glutamate to gamma-aminobutyric acid (GABA). Paucity GABA and excess of glutamate cause nystagmus (less GABA) and high-frequency saccadic oscillations (excessive glutamate).


Asunto(s)
Enfermedades del Sistema Inmune , Nistagmo Patológico , Trastornos de la Motilidad Ocular , Glutamato Descarboxilasa , Humanos , Enfermedades del Sistema Inmune/complicaciones , Movimientos Sacádicos
9.
J Neuroophthalmol ; 42(1): 45-55, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34812763

RESUMEN

BACKGROUND: Spontaneity is a unique feature of the nervous system. One of the fundamentally critical and recognized forms of spontaneous motor activity is witnessed in the visuomotor system. Microsaccades, the miniature spontaneous eye movements, are critical for the visual perception. We hypothesized that microsaccades follow specific temporal patterns that are modulated by the basal ganglia output. METHODS: We used high-resolution video-oculography to capture microsaccades in 48 subjects (31 healthy and 17 with Parkinson's disease) when subjects were asked to hold their gaze on a straight-ahead target projected on white background. We analyzed spontaneous discharge patterns of microsaccades. RESULTS: The first analysis considering coefficient of variation in intersaccadic interval distribution demonstrated that microsaccades in Parkinson's disease are more dispersed than the control group. The second analysis scrutinized microsaccades' temporal variability and revealed 3 distinct occurrence patterns: regular rhythmic, clustered, and randomly occurring following a Poisson-like process. The regular pattern was relatively more common in Parkinson's disease. Subthalamic DBS modulated this temporal pattern. The amount of change in the temporal variability depended on the DBS-induced volume of tissue activation and its overlap with the subthalamic nucleus. The third analysis determined the autocorrelations of microsaccades within 2-second time windows. We found that Parkinson's disease altered local temporal organization in microsaccade generation, and DBS had a modulatory effect. CONCLUSION: The microsaccades occur in 3 temporal patterns. The basal ganglia are one of the modulators of the microsaccade spontaneity.


Asunto(s)
Enfermedad de Parkinson , Movimientos Sacádicos , Ganglios Basales , Movimientos Oculares , Fijación Ocular , Humanos , Percepción Visual/fisiología
10.
Eur J Neurosci ; 53(7): 2214-2219, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32237251

RESUMEN

Lateralized differences in pallidal outflow are putatively linked to asymmetric tonic contractions of the neck muscles in cervical dystonia (CD). At the population level, the interhemispheric asymmetry has been traditionally studied for the estimation of the spectral power in specified frequency bands. Broadband spectral features, however, were not taken into consideration. The contemporary analysis revealed that the aperiodic (1/f) broadband activity could be a neurophysiological marker of the excitation/inhibition ratio. During deep brain stimulation (DBS) surgery, we measured bilateral pallidal local field potentials (LFP) in nine CD patients, examining the effects of lateralized asymmetry on 1/f broadband activity. All patients showed a trend towards an asymmetric difference in the 1/f broadband activity. The ipsilateral 1/f slope was significantly higher in internal (GPi) segment of the globus pallidus that is on the contralateral side of the direction of the dystonia. We also found lateralized differences in the beta oscillations for GPi and in the alpha oscillations for GPe. Our findings emphasize the importance of mainstreaming broadband activity in the estimation of LFP spectral features together with periodic features and provide further evidence for the pallidal asymmetry in CD patients.


Asunto(s)
Estimulación Encefálica Profunda , Tortícolis , Globo Pálido , Humanos
11.
Eur J Neurosci ; 53(7): 2388-2397, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32757424

RESUMEN

Focal dystonia, by definition, affects a specific body part; however, it may have a widespread neural substrate. We tested this hypothesis by examining the intrinsic behaviour and the neuronal properties that are modulated by changes in the physiological behaviour of their connections, that is feedback dependence, of the isolated pallidal neurons. During deep brain stimulation surgery in 12 patients with isolated cervical dystonia (without hand involvement), we measured spontaneous as well as evoked single-unit properties in response to fist making (hand movement) or shoulder shrug (neck movements). We measured the activity of isolated neurons that were only sensitive to the neck movements, hand movement, or not responsive to hand or neck movements. The spontaneous firing behaviour, such as the instantaneous firing rate and its regularity, was comparable in all three types of neurons. The neck movement-sensitive neurons had prominent bursting behaviour in comparison with the hand neurons. The feedback dependence of the neck movement-sensitive neurons was also significantly impaired when compared to hand movement-sensitive neurons. Motor-evoked change in firing rate of neck movement-sensitive neurons rapidly declined; the decay time constant was much shorter compared to hand movement-sensitive neurons. These results suggest that in isolated cervical dystonia, at the resolution of single neurons, the deficits are much widespread, affecting the neurons that drive the neck movement as well as the hand movements. We speculate that clinically discernable dystonia occurs when additional abnormality is added to baseline dysfunctional network, and one source of such abnormality may involve feedback.


Asunto(s)
Distonía , Trastornos Distónicos , Retroalimentación , Globo Pálido , Humanos , Neuronas
12.
Mov Disord ; 36(2): 360-369, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33103821

RESUMEN

OBJECTIVES: Parkinson's disease (PD) commonly affects visuospatial navigation causing postural instability and falls. Our overarching aim was to examine the visual and vestibular systems governing visuospatial navigation in PD. We hypothesize that PD affects vestibular and visual motion perception but to a different extent. The effects of PD on motion perception are dependent on the severity of the disease. METHODS: The two-alternative-forced-choice task objectively measured the motion perception during two experiments. One experiment examined the vestibular motion perception with en bloc movement of the platform. The second experiment tested the visual motion perception using an immersive virtual reality goggle. RESULTS: We found that accuracy, threshold, and precision of vestibular perception were more impaired in advanced-PD patients compared to those with a mild form of the disease. The parameters also correlated with the disease duration, overall axial motor impairment causing postural instability and falls, and subjective rating of the balance function. Such changes were present but less severe in visual motion perception. CONCLUSION: We conclude that PD affects motion perception in the visual and vestibular domains in a severity-dependent manner. The impact of the disease in the vestibular domain is more severe compared to the visual domain. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Percepción de Movimiento , Enfermedad de Parkinson , Vestíbulo del Laberinto , Accidentes por Caídas , Humanos , Enfermedad de Parkinson/complicaciones , Equilibrio Postural , Percepción Visual
13.
J Comput Neurosci ; 49(3): 319-331, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32621105

RESUMEN

Syndrome of oculopalatal tremor (OPT) causes pendular nystagmus of the eyes and its disabling consequence on the visual system. Classic pharmacotherapeutic studies revealed reduction in the eye velocity of the oscillatory waveforms. Subjective improvement in vision, however, remains out of proportionately low. Elegant models depicting quasi-sinusoidal coarse oscillations of the eyes highlighted two distinct oscillators; one at the inferior olive causing primary 2 Hz oscillations, while the second, independent oscillator, at the cerebellum adding the randomness to the waveform. Here we examined whether pharmacotherapy affects the randomness of the oscillatory waveform. Horizontal, vertical, and torsional angular eye positions were measured independently from both eyes as six subjects with OPT directed gaze toward a straight-ahead target. The measurements were performed before administration of alpha-2-delta calcium channel blocker (gabapentin) or NMDA receptor antagonist (memantine) and after the subjects were treated with each of these drugs for at least 8 days. Amplitude and velocity of eye oscillations were reduced by gabapentin and memantine, but there was an increase in the waveform randomness. We found that the increase in randomness was proportionate to the amount of reduction in the waveform velocity or amplitude. Hierarchical clustering revealed distinct patterns of oscillatory waveforms, with each subject belonging to a specific cluster group. The pharmacotherapy changed the waveform clustering pattern of the waveform in each subject. We conclude that in addition to incomplete resolution of the oscillation intensity, increased randomness could be one of the reasons why there is not enough clinical difference in the patients' visual quality.


Asunto(s)
Memantina , Temblor , Movimientos Oculares , Gabapentina , Humanos , Modelos Neurológicos , Temblor/tratamiento farmacológico
14.
J Comput Neurosci ; 49(3): 309-318, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32683665

RESUMEN

The syndrome of oculopalatal tremor (OPT) featuring the olivo-cerebellar hypersychrony leads to disabling pendular nystagmus and palatal myoclonus. This rare disorder provides valuable information about the motor physiology and offers insights into the mechanistic underpinning of common movement disorders. This focused review summarizes the last decade of OPT research from our laboratory and addresses three critical questions: 1) How the disease of inferior olive affects the physiology of motor learning? We discovered that our brain's ability to compensate for the impaired motor command and implement errors to correct future movements could be affected if the cerebellum is occupied in receiving and transmitting the meaningless signal. A complete failure of OPT patients to adapt to change in rapid eye movements (saccades) provided proof of this principle. 2) Whether maladaptive olivo-cerebellar circuit offers insight into the mechanistic underpinning of the common movement disorder, dystonia, characterized by abnormal twisting and turning of the body part. We discovered that the subgroup of patients who had OPT also had dystonia affecting the neck, trunk, limbs, and face. We also found that the subjects who had tremor predominant neck dystonia (without OPT) also had impaired motor learning on a long and short timescale, just like those with OPT. Altogether, our studies focused on dystonia suggested the evidence for the maladaptive olive-cerebellar system. 3) We discovered that the OPT subjects had difficulty in perceiving the direction of their linear forward motion, i.e., heading, suggesting that olivo-cerebellar hypersynchrony also affects perception.


Asunto(s)
Mioclonía , Nistagmo Patológico , Adaptación Fisiológica , Humanos , Modelos Neurológicos , Temblor
15.
J Comput Neurosci ; 49(3): 345-356, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33464428

RESUMEN

Miniature yoked eye movements, fixational saccades, are critical to counteract visual fading. Fixational saccades are followed by a return saccades forming squarewaves. Present in healthy states, squarewaves, if too many or too big, affect visual stability. Parkinson's disease (PD), where visual deficits are not uncommon, is associated with the squarewaves that are excessive in number or size. Our working hypothesis is that the basal ganglia are at the epicenter of the abnormal fixational saccades and squarewaves in PD; the effects are manifested through their connections to the superior colliculus (affecting saccade frequency and amplitude) and the cerebellum (affecting velocity and amplitude). We predict that the subthalamic deep brain stimulation (DBS) variably affects the amplitude, frequency, and velocity of fixational saccade and that the effect depends on the electrode's proximity or the volume of activated tissue in the subthalamic nucleus' connections with the superior colliculus or the cerebellum. We found that DBS modulated saccade amplitude, frequency, and velocity in 11 PD patients. Although all three parameters were affected, the extent of the effects varied amongst subjects. The modulation was dependent upon the location and size of the electrically activated volume of the subthalamic region.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Movimientos Oculares , Humanos , Modelos Neurológicos , Enfermedad de Parkinson/terapia , Movimientos Sacádicos
16.
Cerebellum ; 20(5): 744-750, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31939030

RESUMEN

Multisensory integration is critical for resolving ambiguities in isolated sensory systems assuring accurate perception of one's own linear motion, i.e., heading. The vestibular signal, a critical source of information for heading perception, is transformed in appropriate coordinates suitable for multisensory integration-such transformation takes place under cerebellar supervision. Deficiency in cerebellar function due to Purkinje cell loss results in inaccurate multisensory integration and impaired heading perception. Here, we predict that a classic movement disorder, the syndrome of oculopalatal tremor (OPT), also presents with inaccurate heading direction perception. The characteristic feature of oculopalatal tremor is pseudohypertrophic inferior olive that constantly sends spontaneous, hypersynchronous, abnormal, and meaningless signals to the cerebellum. Such malicious olive signal can impair heading perception. We examined vestibular heading perception in 6 individuals with OPT and 9 age-matched healthy controls (HC). We used a two-alternative forced choice task performed during passive en bloc translation. Compared with age-matched HC, OPT group had significantly higher heading direction perception threshold indicating a less sensitive vestibular system to variations in heading direction. Using computational simulations, we show that the addition of the abnormal noise into the cerebellar system results in decreased spatiotemporal tuning behavior of the cerebellar output. Such impairment in spatiotemporal tuning causes reduced ability to perceive heading direction. Hyperactivity in the inferior-olive cerebellar pathway impairs the heading direction perception. We suggest that this impairment stems from abnormal noise into the cerebellum due to hypersynchronized inferior olive.


Asunto(s)
Percepción de Movimiento , Vestíbulo del Laberinto , Núcleos Cerebelosos , Humanos , Percepción de Movimiento/fisiología , Núcleo Olivar , Temblor , Vestíbulo del Laberinto/fisiología
17.
Cerebellum ; 20(5): 788-795, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32740743

RESUMEN

Perception of our linear motion, heading, relies on convergence from multiple sensory systems utilizing visual and vestibular signals. Multisensory convergence takes place in the visuo-vestibular areas of the cerebral cortex and posterior cerebellar vermis. Latter closely connected with the inferior olive may malfunction in disorders of olivo-cerebellar hypersynchrony, such as the syndrome of oculopalatal tremor (OPT). We had recently shown an impairment in vestibular heading perception in the subjects with OPT. Here we asked whether the hypersynchrony in the inferior-olive cerebellar circuit also affects the visual perception of heading, and the impairment is coupled with the deficits in vestibular heading perception. Three subjects with OPT and 11 healthy controls performed a two-alternative forced-choice task in two separate experiments; one when they were moved en bloc in a straight-ahead forward direction or at multiple heading angles to the right or the left; and second when under virtual reality goggle they experienced the movement of star cloud leading to the percept of heading straight, left or to the right at the heading angles similar to those utilized in the vestibular task. The resultant psychometric function curves, derived from the two-alternative-forced-choice task, revealed abnormal threshold to perceive heading direction, abnormal sensitivity to the change in heading direction compared to straight ahead, and a bias towards one side. Although the impairment was present in both visual and vestibular heading perception, the deficits were not coupled.


Asunto(s)
Percepción de Movimiento , Vestíbulo del Laberinto , Corteza Cerebral , Humanos , Estimulación Luminosa , Temblor , Visión Ocular , Percepción Visual
18.
Cerebellum ; 20(5): 780-787, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32737797

RESUMEN

Hyperventilation changes the extracellular pH modulating many central pathologies, such as tremor. The questions that remain unanswered are the following: (1) Hyperventilation modulates which aspects of the oscillations? (2) Whether the effects of hyperventilation are instantaneous and the recovery is rapid and complete? Here we study the effects of hyperventilation on eye oscillations in the syndrome of oculopalatal tremor (OPT), a disease model affecting the inferior olive and cerebellar system. These regions are commonly involved in the pathogenesis of many movement disorders. The focus on the ocular motor system also allows access to the well-known physiology and precise measurement techniques. We found that hyperventilation causes modest but insignificant changes in the intensity of oscillation displacement (i.e., how large the eye excursions are) and velocity (i.e., how fast do the eyes move during oscillations). We found the robust increase in the randomness of the oscillatory waveform during hyperventilation and it instantaneously reverts to the baseline after hyperventilation. The subsequent analysis classified the oscillations according to their waveform shape and randomness into different clusters. The hyperventilation substantially changed the cluster type in 60% of the subjects, but it reverted to the pre-hyperventilation cluster at the conclusion of the hyperventilation. In summary, hyperventilation instantaneously affects the randomness of the oscillatory waveforms but there are less substantial effects on the intensity. The deficits reverse immediately at the end of the hyperventilation.


Asunto(s)
Hiperventilación , Temblor , Movimientos Oculares , Humanos , Hiperventilación/patología , Núcleo Olivar/fisiología , Temblor/patología , Visión Ocular
19.
Cerebellum ; 20(5): 678-686, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31965455

RESUMEN

We examined the role of the cerebellum in patients with tremor-dominant cervical dystonia by measuring the adaptive capacity of rapid reflexive eye movements (saccades). We chose the saccade adaptation paradigm because, unlike other motor learning paradigms, the real-time modification of saccades cannot "wait" for the sensory (visual) feedback. Instead, saccades rely primarily on the internal reafference modulated by the cerebellum. The saccade adaptation happens over fast and slow timescales. The fast timescale has poor retention of learned response, while the slow timescale has strong retention. Cerebellar defects resulting in loss of function affect the fast timescale but the slow timescale of saccade adaptation is retained. In contrast, maladaptive cerebellar disorders feature the absence of both fast and slow timescales. We were able to measure both timescales using noninvasive oculography in 6 normal individuals. In contrast, both timescales were absent in 12 patients with tremor-dominant cervical dystonia. These findings are consistent with maladaptive cerebellar outflow as a putative pathophysiological basis for tremor-dominant cervical dystonia.


Asunto(s)
Movimientos Sacádicos , Tortícolis , Adaptación Fisiológica/fisiología , Cerebelo , Humanos , Temblor
20.
Cerebellum ; 20(1): 4-8, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32794025

RESUMEN

The virtual practice has made major advances in the way that we care for patients in the modern era. The culture of virtual practice, consulting, and telemedicine, which had started several years ago, took an accelerated leap as humankind was challenged by the novel coronavirus pandemic (COVID19). The social distancing measures and lockdowns imposed in many countries left medical care providers with limited options in evaluating ambulatory patients, pushing the rapid transition to assessments via virtual platforms. In this novel arena of medical practice, which may form new norms beyond the current pandemic crisis, we found it critical to define guidelines on the recommended practice in neurotology, including remote methods in examining the vestibular and eye movement function. The proposed remote examination methods aim to reliably diagnose acute and subacute diseases of the inner-ear, brainstem, and the cerebellum. A key aim was to triage patients into those requiring urgent emergency room assessment versus non-urgent but expedited outpatient management. Physicians who had expertise in managing patients with vestibular disorders were invited to participate in the taskforce. The focus was on two topics: (1) an adequate eye movement and vestibular examination strategy using virtual platforms and (2) a decision pathway providing guidance about which patient should seek urgent medical care and which patient should have non-urgent but expedited outpatient management.


Asunto(s)
COVID-19 , Examen Neurológico/métodos , Telemedicina/métodos , Triaje/métodos , Enfermedades Vestibulares/diagnóstico , Consenso , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda