Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Immunol ; 208(7): 1525-1533, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288471

RESUMEN

Severe asthma is characterized by steroid insensitivity and poor symptom control and is responsible for most asthma-related hospital costs. Therapeutic options remain limited, in part due to limited understanding of mechanisms driving severe asthma. Increased arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is increased in human asthmatic lungs. In this study, we show that PRMT5 drives allergic airway inflammation in a mouse model reproducing multiple aspects of human severe asthma. We find that PRMT5 is required in CD4+ T cells for chronic steroid-insensitive severe lung inflammation, with selective T cell deletion of PRMT5 robustly suppressing eosinophilic and neutrophilic lung inflammation, pathology, airway remodeling, and hyperresponsiveness. Mechanistically, we observed high pulmonary sterol metabolic activity, retinoic acid-related orphan receptor γt (RORγt), and Th17 responses, with PRMT5-dependent increases in RORγt's agonist desmosterol. Our work demonstrates that T cell PRMT5 drives severe allergic lung inflammation and has potential implications for the pathogenesis and therapeutic targeting of severe asthma.


Asunto(s)
Asma , Hipersensibilidad , Animales , Asma/metabolismo , Granulocitos/metabolismo , Hipersensibilidad/metabolismo , Inflamación/metabolismo , Ratones , Células Th17/metabolismo
2.
J Neurosci Res ; 98(3): 557-570, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31541497

RESUMEN

Traumatic brain injury (TBI) is a major public health concern affecting 2.8 million people per year in the United States, of whom about 1 million are children under 19 years old. Animal models of TBI have been developed and used in multiple ages of animals, but direct comparisons of adult and adolescent populations are rare. The current studies were undertaken to directly compare outcomes between adult and adolescent male mice, using a closed head, single-impact model of TBI. Six-week-old adolescent and 9-week-old adult male mice were subjected to mild-moderate TBI. Histological measures for neurodegeneration, gliosis, and microglial neuroinflammation, and behavioral tests of locomotion and memory were performed. Adolescent TBI mice have increased mortality (Χ2  = 20.72, p < 0.001) compared to adults. There is also evidence of hippocampal neurodegeneration in adolescents that is not present in adults. Hippocampal neurodegeneration correlates with histologic activation of microglia, but not with increased astrogliosis. Adults and adolescents have similar locomotion deficits after TBI that recover by 16 days postinjury. Adolescents have memory deficits as evidenced by impaired novel object recognition between 3-4 and 4-16 days postinjury (F1,26  = 5.23, p = 0.031) while adults do not. In conclusion, adults and adolescents within a close age range (6-9 weeks) respond to TBI differently. Adolescents are more severely affected by mortality, neurodegeneration, and inflammation in the hippocampus compared to adults. Adolescents, but not adults, have worse memory performance after TBI that lasts at least 16 days postinjury.


Asunto(s)
Traumatismos Cerrados de la Cabeza/patología , Traumatismos Cerrados de la Cabeza/psicología , Hipocampo/patología , Trastornos de la Memoria/patología , Factores de Edad , Animales , Conducta Animal , Modelos Animales de Enfermedad , Traumatismos Cerrados de la Cabeza/complicaciones , Locomoción , Masculino , Trastornos de la Memoria/etiología , Ratones Endogámicos C57BL
3.
bioRxiv ; 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36824913

RESUMEN

The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury, but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro co-culture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro . Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have therapeutic potential to mitigate lung injury during mechanical ventilation.

4.
ACS Nano ; 17(17): 16539-16552, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37595605

RESUMEN

The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro coculture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro. Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose of miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a levels in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have the therapeutic potential to mitigate lung injury during mechanical ventilation.


Asunto(s)
Lesión Pulmonar , MicroARNs , Síndrome de Dificultad Respiratoria , Choque Hemorrágico , Animales , Ratones , Macrófagos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
5.
Cells ; 10(12)2021 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-34943851

RESUMEN

Injury to the optic nerve, termed, traumatic optic neuropathy (TON) is a known comorbidity of traumatic brain injury (TBI) and is now known to cause chronic and progressive retinal thinning up to 35 years after injury. Although animal models of TBI have described the presence of optic nerve degeneration and research exploring acute mechanisms is underway, few studies in humans or animals have examined chronic TON pathophysiology outside the retina. We used a closed-head weight-drop model of TBI/TON in 6-week-old male C57BL/6 mice. Mice were euthanized 7-, 14-, 30-, 90-, and 150-days post-injury (DPI) to assess histological changes in the visual system of the brain spanning a total of 12 regions. We show chronic elevation of FluoroJade-C, indicative of neurodegeneration, throughout the time course. Intriguingly, FJ-C staining revealed a bimodal distribution of mice indicating the possibility of subpopulations that may be more or less susceptible to injury outcomes. Additionally, we show that microglia and astrocytes react to optic nerve damage in both temporally and regionally different ways. Despite these differences, astrogliosis and microglial changes were alleviated between 14-30 DPI in all regions examined, perhaps indicating a potentially critical period for intervention/recovery that may determine chronic outcomes.


Asunto(s)
Envejecimiento/patología , Degeneración Nerviosa/patología , Neuroglía/patología , Traumatismos del Nervio Óptico/patología , Heridas y Lesiones/patología , Animales , Peso Corporal , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Enfermedad Crónica , Masculino , Ratones Endogámicos C57BL , Microglía/patología , Degeneración Nerviosa/complicaciones , Nervio Óptico/patología , Traumatismos del Nervio Óptico/complicaciones , Convulsiones/complicaciones , Factores de Tiempo , Heridas y Lesiones/complicaciones
6.
JCI Insight ; 6(14)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34138757

RESUMEN

The acute respiratory distress syndrome (ARDS) is a highly lethal condition that impairs lung function and causes respiratory failure. Mechanical ventilation (MV) maintains gas exchange in patients with ARDS but exposes lung cells to physical forces that exacerbate injury. Our data demonstrate that mTOR complex 1 (mTORC1) is a mechanosensor in lung epithelial cells and that activation of this pathway during MV impairs lung function. We found that mTORC1 is activated in lung epithelial cells following volutrauma and atelectrauma in mice and humanized in vitro models of the lung microenvironment. mTORC1 is also activated in lung tissue of mechanically ventilated patients with ARDS. Deletion of Tsc2, a negative regulator of mTORC1, in epithelial cells impairs lung compliance during MV. Conversely, treatment with rapamycin at the time MV is initiated improves lung compliance without altering lung inflammation or barrier permeability. mTORC1 inhibition mitigates physiologic lung injury by preventing surfactant dysfunction during MV. Our data demonstrate that, in contrast to canonical mTORC1 activation under favorable growth conditions, activation of mTORC1 during MV exacerbates lung injury and inhibition of this pathway may be a novel therapeutic target to mitigate ventilator-induced lung injury during ARDS.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Surfactantes Pulmonares/metabolismo , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/metabolismo , Pulmón/patología , Rendimiento Pulmonar/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/fisiopatología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda