Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecotoxicol Environ Saf ; 194: 110440, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32169729

RESUMEN

MOFs are usually used as efficient adsorbents to remove specific pollutants in water. However, because of their poor water stability relatively small particle size, their application in adsorbing and removing pollutants from water is limited. In this paper, with nitrile rubber sponge as the substrate, UiO-66-NH2/sponge composites were firstly in-situ synthesized and systematically evaluated UiO-66-NH2 as an adsorbent to remove 2,4-dichlorophenoxyacetic acid from water. This composite could not only remain the adsorption capacity for 2,4-dichlorophenoxyacetic acid of UiO-66-NH2, but also was much more convenient for separation after the adsorption compared to UiO-66-NH2. In addition, the mechanism of the adsorption of UiO-66-NH2 for 2,4-dichlorophenoxyacetic acid were discussed in detail. Electrostatic interaction between UiO-66-NH2 and 2,4-dichlorophenoxyacetic acid was the main adsorption mechanism. The adsorption was mainly suitable for Langmuir isotherm models, and its maximum adsorption capacity of 2,4-dichlorophenoxyacetic acid was 72.99 mg g-1.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/química , Contaminantes Químicos del Agua/química , Adsorción , Agua , Purificación del Agua/métodos
2.
J Hazard Mater ; 423(Pt B): 127181, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34844338

RESUMEN

As anthropogenic antibiotics, quinolones, e.g., ofloxacin have adverse impacts on ecological systems and human heaths. The removal of quinolones is of great importance, and adsorption techniques have been widely used to remove this hazardous contaminant. However, a robust and easy-operating adsorbent is still emergently required due to the complex chemical structure of quinolones. In this study, we successfully synthesized the promising metallic carbons (MCs) containing carbon nanotubes and cobalt nanoparticles by carbonizing Zn/Co-ZIF at 900 °C. Three different molar ratios of Co and Zn were applied to optimize the adsorption capacity on ofloxacin (OFL). Results showed MC with molar ratio of Co and Zn at 3:1 (Co-CNT/NPC3/1) achieved the maximal adsorption capacity to 118.3 mg g-1. Its adsorption performance was satisfied in the pH range from 5 to 9 and ionic strengths at 0.01 M. The main mechanisms for these adsorptions were identified as electrostatic attraction, metal coordination and π-π EDA. Removal efficiencies of quinolones higher than 68 mg g-1 indicated the strong feasibility of this adsorbent for wastewater treatments. The regeneration of Co-CNT/NPC3/1 at 600 °C allowed its at least 4-time reusability and its magnetic property enabled external magnets to recycle it from real environments.


Asunto(s)
Nanotubos de Carbono , Quinolonas , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Humanos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda