Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Cell Neurosci ; 131: 103959, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179164

RESUMEN

ß-Hydroxybutyrate (BHB) has been reported to exert neuroprotective functions and is considered a promising treatment for neurodegenerative diseases such as Parkinson's and Alzheimer's. Numerous studies have revealed BHB's multifaceted roles, including anti-senescence, anti-oxidative, and anti-inflammatory activities. However, the underlying mechanisms warrant further investigation. Astrocytes, the most abundant glial cells in the central nervous system, play a pivotal role in the development and progression of neurodegenerative diseases. While BHB is known to alter neuronal metabolism and function, its effects on astrocytes remain poorly understood. In this study, we conducted transcriptome sequencing analysis to identify differentially expressed genes induced by BHB in astrocytes and found that the gene Solute carrier family 1 member 3 (Slc1a3), encoding the glutamate transporter EAAT1, was significantly upregulated by BHB treatment. Cellular and animal-based experiments confirmed an increase in EAAT1 protein expression in primary astrocytes and the hippocampus of mice treated with BHB. This upregulation may be due to the activation of the Ca2+/CAMKII pathway by BHB. Furthermore, BHB improved astrocytes' glutamate uptake and partially restored neuronal viability impaired by glutamate-induced excitotoxicity when astrocytes were functionalized. Our results suggest that BHB may alleviate neuronal damage caused by excessive glutamate by enhancing the glutamate absorption and uptake capacity of astrocytes. This study proposes a novel mechanism for the neuroprotective effects of BHB and reinforces its beneficial impact on the central nervous system (CNS).

2.
Small ; 20(31): e2311812, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38453675

RESUMEN

Local high concentration electrolytes (LHCEs) have been proved to be one of the most promising systems to stabilize both high voltage cathodes and Li metal anode for next-generation batteries. However, the solvation structures and interactions among different species in LHCEs are still convoluted, which bottlenecks the further breakthrough on electrolyte development. Here, it is demonstrated that the hydrogen bonding interaction between diluent and solvent is crucial for the construction of LHCEs and corresponding interphase chemistries. The 2,2,2-trifluoroethyl trifluoromethane sulfonate (TFSF) is selected as diluent with the solvent dimethoxy-ethane (DME) to prepare a non-flammable LHCE for high voltage LMBs. This is first find that the hydrogen bonding interaction between TFSF and DME solvent tailors the electrolyte solvation structures by weakening the coordination of DME molecules to Li+ cations and allows more participation of anions in the first solvation shell, leading to the formation of aggregates (AGGs) clusters which are conducive to generating inorganic solid/cathodic electrolyte interphases (SEI/CEIs). The proposed TFSF based LHCE enables the Li||NCM811 (LiNi0.8Mn0.1O2) batteries to realize >80% capacity retention with a high average Coulombic efficiency of 99.8% for 230 cycles under aggressive conditions (NCM811 cathode: 3.4 mAh cm-2, cut-off voltage: 4.4 V, and 20 µm Li foil).

3.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892148

RESUMEN

The primary emphasis of photoimmunology is the impact of nonionizing radiation on the immune system. With the development of terahertz (THz) and sub-terahertz (sub-THz) technology, the biological effects of this emerging nonionizing radiation, particularly its influence on immune function, remain insufficiently explored but are progressively attracting attention. Here, we demonstrated that 0.1 sub-THz radiation can modulate the immune system and alleviate symptoms of arthritis in collagen-induced arthritis (CIA) mice through a nonthermal manner. The application of 0.1 sub-THz irradiation led to a decrease in proinflammatory factors within the joints and serum, reducing the levels of blood immune cells and the quantity of splenic CD4+ T cells. Notably, 0.1 sub-THz irradiation restored depleted Treg cells in CIA mice and re-established the Th17/Treg equilibrium. These findings suggested that sub-THz irradiation plays a crucial role in systemic immunoregulation. Further exploration of its immune modulation mechanisms revealed the anti-inflammatory properties of 0.1 sub-THz on LPS-stimulated skin keratinocytes. Through the reduction in NF-κB signaling and NLRP3 inflammasome activation, 0.1 sub-THz irradiation effectively decreased the production of inflammatory factors and immune-active substances, including IL-1ß and PGE2, in HaCaT cells. Consequently, 0.1 sub-THz irradiation mitigated the inflammatory response and contributed to the maintenance of immune tolerance in CIA mice. This research provided significant new evidence supporting the systemic impacts of 0.1 sub-THz radiation, particularly on the immune system. It also enhanced the field of photoimmunology and offered valuable insights into the potential biomedical applications of 0.1 sub-THz radiation for treating autoimmune diseases.


Asunto(s)
Artritis Experimental , Animales , Artritis Experimental/inmunología , Artritis Experimental/radioterapia , Artritis Experimental/patología , Ratones , Radiación Terahertz , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , FN-kappa B/metabolismo , Ratones Endogámicos DBA , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de la radiación , Humanos , Transducción de Señal/efectos de la radiación , Queratinocitos/efectos de la radiación , Queratinocitos/inmunología , Queratinocitos/metabolismo
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108273

RESUMEN

Understanding the vibrational information encoded within the terahertz (THz) spectrum of biomolecules is critical for guiding the exploration of its functional responses to specific THz radiation wavelengths. This study investigated several important phospholipid components of biological membranes-distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylcholine (DPPC), sphingosine phosphorylcholine (SPH), and lecithin bilayer-using THz time-domain spectroscopy. We observed similar spectral patterns for DPPC, SPH, and the lecithin bilayer, all of which contain the choline group as the hydrophilic head. Notably, the spectrum of DSPE, which has an ethanolamine head group, was different. Interestingly, density functional theory calculations confirmed that the absorption peak common to DSPE and DPPC at approximately 3.0 THz originated from a collective vibration of their similar hydrophobic tails. Accordingly, the cell membrane fluidity of RAW264.7 macrophages with irradiation at 3.1 THz was significantly enhanced, leading to improved phagocytosis. Our results highlight the importance of the spectral characteristics of the phospholipid bilayers when studying their functional responses in the THz band and suggest that irradiation at 3.1 THz is a potential non-invasive strategy to increase the fluidity of phospholipid bilayers for biomedical applications such as immune activation or drug administration.


Asunto(s)
Fosfolípidos , Espectroscopía de Terahertz , Lecitinas , Espectroscopía de Terahertz/métodos
5.
Nano Lett ; 20(4): 2724-2732, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32149520

RESUMEN

Three-dimensional (3D) lithiophilic host is one of the most effective ways to regulate the Li dendrites and volume change in working Li metal anode. The state-of-the-art 3D lithiophilic hosts are facing one main challenge in that the lithiophilic layer would melt or fall off in high-temperature environment when using the thermal infusion method. Herein, a 3D porous CuZn alloy host containing anchored lithiophilic Zn sites is employed to prestore Li using the thermal infusion strategy, and a 3D composite Li is thus fabricated. Benefiting from the lithiophilic Zn sites with a strong adsorption capacity with Li, which is based on the analyses of the nucleation overpotential, binding energy calculation, and the operando optical observation of Li plating/stripping behaviors, facile uniform Li nucleation and dendrite-free Li deposition could be achieved in the interior of the 3D porous CuZn alloy host and the 3D composite Li shows remarkable enhancement in electrochemical performance.

6.
Electromagn Biol Med ; 39(2): 109-122, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32164469

RESUMEN

The biosafety of ultra-wideband (UWB) pulses, which are characterized by simultaneously high power and a high bandwidth ratio, has gained increasing attention. Although there is substantial prior literature on the biological effects of UWB pulses on both cells and animals, an explicit, unequivocal and definite pattern of the corresponding biological responses remains elusive, and the systemic secondary consequences are also still not fully understood. In this study, we found that exposing mice to UWB pulses resulted in the alteration of several biochemical blood parameters, which further prompted us to investigate changes in the liver and kidneys of mice exposed to UWB pulses with different field intensities and different durations. The data demonstrated that exposure to UWB pulses significantly increased the levels of ALT and AST, increased oxidative stress, and could even induce the accumulation of lipid droplets in hepatocytes. The total number of pulses under the tested acute exposure regiment contributed most to the observed hepatic and rental dysfunction. Notably, the physiological and molecular changes recovered approximately 72 hours after exposure. These results imply the potential risk of acute exposure to UWB pulses, and highlight the meaningful targets for further long-term study of chronic exposure.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Riñón/efectos de la radiación , Hígado/efectos de la radiación , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Riñón/citología , Riñón/metabolismo , Hígado/citología , Hígado/metabolismo , Malondialdehído/metabolismo , Ratones , Estrés Oxidativo/efectos de la radiación , Factores de Tiempo
7.
Biomacromolecules ; 20(9): 3313-3323, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31198025

RESUMEN

As a biopolyester with excellent properties, the potential biomedical applications of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) have gained extensive attention. In this research, PHBHHx was fabricated into nanoparticles (NPs) to encapsulate NVP-BEZ235 (BEZ), an efficient kinase inhibitor/antitumor agent, for tumor targeting therapy. The resulting BEZ-NPs displayed a regularly spherical form with an appropriate diameter at 76.0 ± 3.6 nm. The encapsulation efficiency of BEZ was 83.7 ± 3.6%, and the sustained release profiles showed that almost 97% of BEZ could be gradually unrestricted from PHBHHx NPs within 72 h. The nanotoxicity studies revealed a satisfactory biosafety of PHBHHx NPs. PHBHHx NPs presented significantly improved cellular uptake in human prostate cancer cell line PC3, thereby enhancing the antiproliferation ability and kinase inhibitory activity of BEZ in vitro. More importantly, the in vivo real-time imaging demonstrated the adequate tumor targeting and accumulation capability of PHBHHx NPs. The remarkably delayed tumor growth, increased tumor necrosis, and reduced tumor proliferation in PC3 tumor xenograft mice further confirmed the antitumor efficacies of BEZ-loaded PHBHHx NPs. The above results suggest that PHBHHx NPs might be a promising drug delivery vehicle, safe and effective, for tumor targeting therapy.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Caproatos/farmacología , Imidazoles/química , Nanopartículas/química , Neoplasias de la Próstata/tratamiento farmacológico , Quinolinas/química , Ácido 3-Hidroxibutírico/química , Animales , Biopolímeros/biosíntesis , Biopolímeros/farmacología , Caproatos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Xenoinjertos , Humanos , Imidazoles/farmacología , Masculino , Ratones , Terapia Molecular Dirigida , Nanopartículas/administración & dosificación , Neoplasias de la Próstata/patología , Quinolinas/farmacología
8.
Cell Mol Neurobiol ; 38(8): 1479-1489, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30218403

RESUMEN

Activation of inflammasome leads to the formation of an inflammatory microenvironment which plays an important role in the process of cancer development. Beta-hydroxybutyrate (BHB) is a ketone body that has recently been reported to exert anti-inflammatory effects via inhibition of NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. Here, we investigated the potential influence of BHB on the in vitro migration of C6 glioma cells and the activation of NLRP3 inflammasome. Our results indicated that administration of BHB suppressed C6 cells migration and NLRP3 inflammasome activation, reducing the levels of activated cysteinyl aspartate-specific proteinase 1 (caspase-1) and mature Interleukin 1ß (IL-1ß). Fully activation of NLRP3 inflammasome was induced by lipopolysaccharide (LPS) prime plus adenosine triphosphate (ATP) stimulation in C6 cells, which promoted in vitro migration of C6 cell. BHB also counteracted the LPS/ATP-promoted cell migration by suppressing the activation of caspase-1 and the maturation of IL-1ß. The enhancement of phospho-signal transducer and activator of transcription 3 (p-STAT3), degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) as well as the overexpression of fibroblast growth factor 2 (FGF2) resulting from LPS/ATP treatment, and subsequent IL-1ß maturation could also be compensated by BHB. Our results suggested that BHB inhibits the activation of NLRP3 inflammasome in C6 glioma cells and consequently suppressed the C6 cell migration. These findings also implicated that by inhibiting NLRP3 inflammasome, BHB reduced the inflammatory microenvironment which provided ancillary therapeutic benefits for the intervention of glioma.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Movimiento Celular/efectos de los fármacos , Glioma/metabolismo , Glioma/patología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adenosina Trifosfato/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Toxina del Pertussis/farmacología , Ratas
9.
Prostate ; 76(1): 41-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26390988

RESUMEN

BACKGROUND: This nationwide population-based study investigated the risk of type 2 diabetes mellitus (DM) after 5-alpha-reductase inhibitor (5ARI) therapy for benign prostate hyperplasia (BPH) using the National Health Insurance Research Database (NHIRD) in Taiwan. METHODS: In total, 1,298 adult patients newly diagnosed with BPH and who used more than 28 cumulative defined daily doses (cDDD) of 5ARI were recruited as the therapy group cohort, along with 1,2887 subjects who did not use more than 28 cDDD of 5ARI as a control group from 2002 to 2009. Each patient was monitored for 5 years (from 2003 to 2008) to identify those who subsequently developed type 2 DM. A Cox proportional hazards model was used to compare the risk of type 2 DM between the study and comparison cohorts after adjusting for possible confounding risk factors. RESULTS: Patients who received 5ARI therapy had a lower cumulative rate of type 2 DM than those who did not receive 5ARI during the five-year follow-up period (3.5% vs. 5.3%, P = 0.003). In sub-group analysis, among the BPH patients aged <65 years, the five-year type 2 DM events hazard ratio (HR) of 5ARI users was lower than that of nonusers (HR: 0.47, 95% confidence interval (CI): 0.24-0.91; P = 0.026). CONCLUSIONS: Therapy with 5ARI may decrease the five-year risk of type 2 DM in the BPH patients younger than 65 years. Further mechanistic research is warranted to validate the results.


Asunto(s)
Inhibidores de 5-alfa-Reductasa , Diabetes Mellitus Tipo 2 , Hiperplasia Prostática , Inhibidores de 5-alfa-Reductasa/administración & dosificación , Inhibidores de 5-alfa-Reductasa/efectos adversos , Factores de Edad , Anciano , Estudios de Cohortes , Factores de Confusión Epidemiológicos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/epidemiología , Factores de Riesgo , Taiwán/epidemiología
10.
Biochim Biophys Acta ; 1830(10): 4917-27, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23845726

RESUMEN

BACKGROUND: Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family which is associated with the disease status and outcomes of cancers. Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to the bone. However, the effect of CCL2 on human prostate cancer cells is largely unknown. The aim of this study was to examine the role of CCL2 in integrin expression and migratory activity in prostate cancers. METHODS: Prostate cancer migration was examined using Transwell, wound healing, and invasion assay. The PKCδ and c-Src phosphorylations were examined by using western blotting. The qPCR was used to examine the mRNA expression of integrins. A transient transfection protocol was used to examine AP-1 activity. RESULTS: Stimulation of prostate cancer cell lines (PC3, DU145, and LNCaP) induced migration and expression of integrin αvß3. Treatment of cells with αvß3 antibody or siRNA abolished CCL2-increased cell migration. CCL2-increased migration and integrin expression were diminished by CCR2 but not by CCR4 inhibitors, suggesting that the CCR2 receptor is involved in CCL2-promoted prostate cancer migration. CCL2 activated a signal transduction pathway that includes PKCδ, c-Src, and AP-1. Reagents that inhibit specific components of this pathway each diminished the ability of CCL2 to effect cell migration and integrin expression. CONCLUSIONS: Interaction between CCL2 and CCR2 enhances migration of prostate cancer cells through an increase in αvß3 integrin production. GENERAL SIGNIFICANCE: CCL2 is a critical factor of prostate cancer metastasis.


Asunto(s)
Quimiocina CCL2/metabolismo , Integrina alfaVbeta3/metabolismo , Metástasis de la Neoplasia , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/patología
11.
Int J Mol Sci ; 15(9): 15622-37, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25192287

RESUMEN

Tanshinone IIA (Tan-IIA), one of the major lipophilic components isolated from the root of Salviae Miltiorrhizae, has been found to exhibit anticancer activity in various cancer cells. We have demonstrated that Tan-IIA induces apoptosis in several human cancer cells through caspase- and mitochondria-dependent pathways. Here we explored the anticancer effect of Tan-IIA in human bladder cancer cell lines. Our results showed that Tan-IIA caused bladder cancer cell death in a time- and dose-dependent manner. Tan-IIA induced apoptosis through the mitochondria-dependent pathway in these bladder cancer cells. Tan-IIA also suppressed the migration of bladder cancer cells as revealed by the wound healing and transwell assays. Finally, combination therapy of Tan-IIA with a lower dose of cisplatin successfully killed bladder cancer cells, suggesting that Tan-IIA can serve as a potential anti-cancer agent in bladder cancer.


Asunto(s)
Abietanos/farmacología , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Vejiga Urinaria/metabolismo , Línea Celular Tumoral , Movimiento Celular , Cisplatino/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Humanos
12.
Genes (Basel) ; 15(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39202405

RESUMEN

With the advancement of terahertz technology, unveiling the mysteries of terahertz has had a profound impact on the field of biomedicine. However, the lack of systematic comparisons for gene expression signatures may diminish the effectiveness and efficiency of identifying common mechanisms underlying terahertz effects across diverse research findings. We performed a comprehensive review and meta-analysis to compile patterns of gene expression profiles associated with THz radiation. Thorough bibliographic reviews were conducted, utilizing the PubMed, Embase, Web of Science, and ProQuest databases to extract references from published articles. Raw CEL files were obtained from Gene Expression Omnibus and preprocessed using Bioconductor packages. This systematic review (Registration No. CDR42024502937) resulted in a detailed analysis of 13 studies (14 papers). There are several possible mechanisms and pathways through which THz radiation could cause biological changes. While the established gene expression results are largely associated with immune response and inflammatory markers, other genes demonstrated transcriptional outcomes that may unravel unknown functions. The enrichment of genes primarily found networks associated with broader stress responses. Altogether, the findings showed that THz can induce a distinct transcriptomic profile that is not associated with a microthermal cellular response. However, it is impossible to pinpoint a single gene or family of genes that would accurately and reliably justify the patterns of gene expression response under THz exposure.


Asunto(s)
Radiación Terahertz , Radiación Terahertz/efectos adversos , Humanos , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos
13.
iScience ; 27(4): 109391, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38532884

RESUMEN

The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.

14.
J Photochem Photobiol B ; 259: 113017, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39226855

RESUMEN

As terahertz (THz) technology advances, the interaction between THz radiation and the living body, particularly its effects on the immune system, has attracted extensive attention but remains poorly understood. This study firstly elucidated that exposure to 3 THz-FEL radiation markedly suppressed contact hypersensitivity reactions in mice induced by DNFB, as evidenced by a reduction in ear thickness and a discernible recovery in the Th1/Th2 cell balance. 3 THz irradiation led to cellular stress in the irradiated skin locale, increasing the levels of IL-4 and IL-10 and modulating the activity and migration of dendritic cells and mast cells. Furthermore, THz irradiation precipitated a rapid alteration in the skin lipidome, altering several categories of bioactive lipids. These findings offer new insights into the immunomodulatory effects of THz radiation on living organisms and the potential underlying mechanisms, with implications for the development of therapeutic approaches in managing skin allergic diseases.

15.
ACS Appl Mater Interfaces ; 16(17): 22482-22492, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651802

RESUMEN

Herein, we present the preparation and properties of an ultrathin, mechanically robust, quasi-solid composite electrolyte (SEO-QSCE) for solid-state lithium metal battery (SLB) from a well-defined polystyrene-b-poly(ethylene oxide) diblock copolymer (SEO), Li6.75La3Zr1.75Ta0.25O12 nanofiller, and fluoroethylene carbonate plasticizer. Compared with the ordered lamellar microphase separation of SEO, the SEO-QSCE displays bicontinuous phases, consisting of a Li+ ion conductive poly(ethylene oxide) domain and a mechanically robust framework of the polystyrene domain. Therefore, the 12 µm-thick SEO-QSCE membrane exhibits an exceptional ionic conductivity of 1.3 × 10-3 S cm-1 at 30 °C, along with a remarkable tensile strength of 5.1 MPa and an elastic modulus of 2.7 GPa. The high mechanical robustness and the self-generated LiF-rich SEI enable the SEO-QSCE to have an extraordinary lithium dendrite prohibition effect. The SLB of Li|SEO-QSCE|LiFePO4 reveals superior cycling performances at 30 °C for over 600 cycles, maintaining an initial discharge capacity of 145 mAh g-1 and a remarkable capacity retention of 81% (117 mAh g-1) after 400 cycles at 0.5 C. The high-voltage SLB of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 displays good cycling stability for over 150 cycles at 30 °C. Moreover, the exceptional robustness of SEO-QSCE enables the high-voltage solid-state pouch cell of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 with high flexibility and excellent safety features. The current investigation delivers a promising and innovative approach for preparing quasi-solid electrolytes with features of ultrathin design, mechanical robustness, and exceptional electrochemical performance for high-voltage SLBs.

16.
World J Clin Cases ; 12(15): 2506-2521, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38817230

RESUMEN

BACKGROUND: The prevalence of non-alcoholic fatty liver (NAFLD) has increased recently. Subjects with NAFLD are known to have higher chance for renal function impairment. Many past studies used traditional multiple linear regression (MLR) to identify risk factors for decreased estimated glomerular filtration rate (eGFR). However, medical research is increasingly relying on emerging machine learning (Mach-L) methods. The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD (NAFLD+, NAFLD-) and to rank their importance. AIM: To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD. METHODS: A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort, accounting for 32 independent variables including demographic, biochemistry and lifestyle parameters (independent variables), while eGFR was used as the dependent variable. Aside from MLR, three Mach-L methods were applied, including stochastic gradient boosting, eXtreme gradient boosting and elastic net. Errors of estimation were used to define method accuracy, where smaller degree of error indicated better model performance. RESULTS: Income, albumin, eGFR, High density lipoprotein-Cholesterol, phosphorus, forced expiratory volume in one second (FEV1), and sleep time were all lower in the NAFLD+ group, while other factors were all significantly higher except for smoking area. Mach-L had lower estimation errors, thus outperforming MLR. In Model 1, age, uric acid (UA), FEV1, plasma calcium level (Ca), plasma albumin level (Alb) and T-bilirubin were the most important factors in the NAFLD+ group, as opposed to age, UA, FEV1, Alb, lactic dehydrogenase (LDH) and Ca for the NAFLD- group. Given the importance percentage was much higher than the 2nd important factor, we built Model 2 by removing age. CONCLUSION: The eGFR were lower in the NAFLD+ group compared to the NAFLD- group, with age being was the most important impact factor in both groups of healthy Chinese women, followed by LDH, UA, FEV1 and Alb. However, for the NAFLD- group, TSH and SBP were the 5th and 6th most important factors, as opposed to Ca and BF in the NAFLD+ group.

17.
Antioxidants (Basel) ; 13(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397784

RESUMEN

Psoriasis is one of several chronic inflammatory skin diseases with a high rate of recurrence, and its pathogenesis remains unclear. Nicotinamide mononucleotide (NMN), as an important precursor of nicotinamide adenine dinucleotide (NAD+), has been reported to be a promising agent in treating various diseases, its positive effects including those induced via its anti-inflammatory and antioxidant properties. For this reason, we have aimed to explore the possible role of NMN in the treatment of psoriasis. Psoriasis models were constructed with imiquimod (IMQ) stimulation for 5 days in vivo and with M5 treatment in keratinocyte cell lines in vitro. NMN treatment during the IMQ application period markedly attenuated excess epidermal proliferation, splenomegaly, and inflammatory responses. According to GEO databases, Sirtuin1 (SIRT1) levels significantly decreased in psoriasis patients' lesion tissues; this was also the case in the IMQ-treated mice, while NMN treatment reversed the SIRT1 decline in the mouse model. Moreover, NMN supplementation also improved the prognoses of the mice after IMQ stimulation, compared to the untreated group with elevated SIRT1 levels. In HEKa and HaCaT cells, the co-culturing of NMN and M5 significantly decreased the expression levels of proinflammation factors, the phosphorylation of NF-κB, stimulator of interferon genes (STING) levels, and reactive oxygen species levels. NMN treatment also recovered the decrease in mitochondrial membrane potential and respiration ability and reduced mtDNA in the cytoplasm, leading to the inhibition of autoimmune inflammation. The knockdown of SIRT1 in vitro eliminated the protective and therapeutic effects of NMN against M5. To conclude, our results indicate that NMN protects against IMQ-induced psoriatic inflammation, oxidative stress, and mitochondrial dysfunction by activating the SIRT1 pathway.

18.
ACS Nano ; 18(3): 1969-1981, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206167

RESUMEN

The components and structures of the solid-electrolyte interphase (SEI) are critical for stable cycling of lithium metal batteries (LMBs). LiF has been widely studied as the dominant component of SEI, but Li2O, which has a much lower diffusion barrier for Li+, has rarely been investigated as the dominant component of SEI. The effect of Li2O-dominated SEI on electrochemical performance still remains elusive. Herein, an ultrastrong coordinated cosolvation diluent, 2,3-difluoroethoxybenzene (DFEB), is designed to modulate solvation structure and tailor Li2O-dominated SEI for stable LMBs. In the DFEB-based LHCE (DFEB-LHCE), DFEB intensively participates in the first solvation shell and synergizes with FSI- to tailor an Li2O-dominated inorganic-rich SEI which is different from the LiF-dominated SEI formed in conventional LHCE. Benefiting from this special SEI architecture, a high Coulombic efficiency (CE) of 99.58% in Li||Cu half cells, stable voltage profiles, and dense and uniform lithium deposition, as well as effective inhibition of Li dendrite formation in the symmetrical cell, are achieved. More importantly, the DFEB-LHCE can be matched with various cathodes such as LFP, NCM811, and S cathodes, and the Li||LFP full cell using DFEB-LHCE possesses 85% capacity retention after 650 stable cycles with 99.9% CE. Especially the 1.5 Ah practical lithium metal pouch cell achieves an excellent capacity retention of 89% after 250 cycles with a superb average CE of 99.93%. This work unravels the superiority of the Li2O-dominated SEI and the feasibility of tailoring SEI components through modulation of solvation structures.

19.
Adv Mater ; 36(23): e2314063, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444248

RESUMEN

Polymer/ceramic-based composite solid electrolytes (CSE) are promising candidates for all-solid-state lithium metal batteries (SLBs), benefiting from the combined mechanical robustness of polymeric electrolytes and the high ionic conductivity of ceramic electrolytes. However, the interfacial instability and poorly understood interphases of CSE hinder their application in high-voltage SLBs. Herein, a simple but effective CSE that stabilizes high-voltage SLBs by forming multiple intermolecular coordination interactions between polyester and ceramic electrolytes is discovered. The multiple coordination between the carbonyl groups in poly(ε-caprolactone) and the fluorosulfonyl groups in anions with Li6.5La3Zr1.5Ta0.5O12 nanoparticles is directly visualized by cryogenic transmission electron microscopy and further confirmed by theoretical calculation. Importantly, the multiple coordination in CSE not only prevents the continuous decomposition of polymer skeleton by shielding the vulnerable carbonyl sites but also establishes stable inorganic-rich interphases through preferential decomposition of anions. The stable CSE and its inorganic-rich interphases enable Li||Li symmetric cells with an exceptional lifespan of over 4800 h without dendritic shorting at 0.1 mA cm-2. Moreover, the high-voltage SLB with LiNi0.5Co0.2Mn0.3O2 cathode displays excellent cycling stability over 1100 cycles at a 1C charge/discharge rate. This work reveals the underlying mechanism behind the excellent stability of coordinating composite electrolytes and interfaces in high-voltage SLBs.

20.
Int J Mol Sci ; 14(5): 9790-802, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23698767

RESUMEN

Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to the bone. D-pinitol, a 3-methoxy analogue of d-chiro-inositol, was identified as an active principle in soy foods and legumes, and it has been proven to induce tumor apoptosis and metastasis of cancer cells. In this study, we investigated the anti-metastasis effects of D-pinitol in human prostate cancer cells. We found that D-pinitol reduced the migration and the invasion of prostate cancer cells (PC3 and DU145) at noncytotoxic concentrations. Integrins are the major adhesive molecules in mammalian cells and have been associated with the metastasis of cancer cells. Treatment of prostate cancer cells with D-pinitol reduced mRNA and cell surface expression of αvß3 integrin. In addition, D-pinitol exerted its inhibitory effects by reducing focal adhesion kinase (FAK) phosphorylation, c-Src kinase activity and NF-kB activation. Thus, D-pinitol may be a novel anti-metastasis agent for the treatment of prostate cancer metastasis.


Asunto(s)
Antineoplásicos/farmacología , Inositol/análogos & derivados , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/inmunología , Humanos , Inositol/farmacología , Integrina alfaVbeta3/inmunología , Masculino , FN-kappa B/inmunología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Próstata/inmunología , Próstata/patología , Neoplasias de la Próstata/inmunología , Familia-src Quinasas/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda