Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Radiat Oncol ; 19(1): 86, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956685

RESUMEN

PURPOSE: To apply an independent GPU-accelerated Monte Carlo (MC) dose verification for CyberKnife M6 with Iris collimator and evaluate the dose calculation accuracy of RayTracing (TPS-RT) algorithm and Monte Carlo (TPS-MC) algorithm in the Precision treatment planning system (TPS). METHODS: GPU-accelerated MC algorithm (ArcherQA-CK) was integrated into a commercial dose verification system, ArcherQA, to implement the patient-specific quality assurance in the CyberKnife M6 system. 30 clinical cases (10 cases in head, and 10 cases in chest, and 10 cases in abdomen) were collected in this study. For each case, three different dose calculation methods (TPS-MC, TPS-RT and ArcherQA-CK) were implemented based on the same treatment plan and compared with each other. For evaluation, the 3D global gamma analysis and dose parameters of the target volume and organs at risk (OARs) were analyzed comparatively. RESULTS: For gamma pass rates at the criterion of 2%/2 mm, the results were over 98.0% for TPS-MC vs.TPS-RT, TPS-MC vs. ArcherQA-CK and TPS-RT vs. ArcherQA-CK in head cases, 84.9% for TPS-MC vs.TPS-RT, 98.0% for TPS-MC vs. ArcherQA-CK and 83.3% for TPS-RT vs. ArcherQA-CK in chest cases, 98.2% for TPS-MC vs.TPS-RT, 99.4% for TPS-MC vs. ArcherQA-CK and 94.5% for TPS-RT vs. ArcherQA-CK in abdomen cases. For dose parameters of planning target volume (PTV) in chest cases, the deviations of TPS-RT vs. TPS-MC and ArcherQA-CK vs. TPS-MC had significant difference (P < 0.01), and the deviations of TPS-RT vs. TPS-MC and TPS-RT vs. ArcherQA-CK were similar (P > 0.05). ArcherQA-CK had less calculation time compared with TPS-MC (1.66 min vs. 65.11 min). CONCLUSIONS: Our proposed MC dose engine (ArcherQA-CK) has a high degree of consistency with the Precision TPS-MC algorithm, which can quickly identify the calculation errors of TPS-RT algorithm for some chest cases. ArcherQA-CK can provide accurate patient-specific quality assurance in clinical practice.


Asunto(s)
Algoritmos , Método de Montecarlo , Órganos en Riesgo , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Radiocirugia/métodos , Radiocirugia/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Neoplasias/cirugía , Neoplasias/radioterapia , Radioterapia de Intensidad Modulada/métodos , Gráficos por Computador
2.
Med Phys ; 50(2): 1215-1227, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36433734

RESUMEN

BACKGROUND: Cherenkov imaging can be used to visualize the placement of the beam directly on the patient's surface tissue and evaluate the accuracy of treatment planning. However, Cherenkov emission intensity is lower than ambient light. At present, time gating is the only way to realize Cherenkov imaging with ambient light. PURPOSE: This study proposes preparing a novel carbon quantum dot (cQD) sheeting to adjust the wavelength of Cherenkov emission to obtain the optimal wavelength meeting the sensitive detection region of the camera, meanwhile the total optical signal is also increased. By combining a specific filter, this approach might help in using lower-cost camera systems without intensifier-coupled to accomplish in vivo monitoring of the surface beam profile on patients with ambient light. METHODS: The cQD sheetings were prepared by spin coating and UV curing with different concentrations. All experiments were performed on the Varian VitalBeam system and optical emission was captured using an electron multiplying charge-coupled device (EMCCD) camera. To quantify the optical characteristics and certify the improvement of light intensity as well as signal-to-noise ratio (SNR) of cQD sheeting, the first part of the study was carried out on solid water with 6 and 10 MV photon beams. The second part was carried out on an anthropomorphic phantom to explore the applicability of sheeting when using different radiotherapy materials and the imaging effect of sheeting with the impact of ambient light sources. Additionally, thanks to the narrow emission spectrum of the cQD, a band-pass filter was tested to reduce the effect from environmental lights. RESULTS: The experimental results show that the optical intensity collected with sheeting has an excellent linear relationship (R2  > 0.99) with the dose for 6 and 10 MV photons. The full-width half maximum (FWHM) in x and y axis matched with the measured EBT film image, with accuracy in the range of ±1.2 and ±2.7 mm standard deviation, respectively. CQD sheeting can significantly improve the light intensity and SNR of optical images. Using 0.1 mg/ml sheeting as an example, the signal intensity is increased by 209%, and the SNR is increased by 147.71% at 6 MV photons. The imaging on the anthropomorphic phantom verified that cQD sheeting could be applied to different radiotherapy materials. The average optical intensity increased by about 69.25%, 63.72%, and 61.78%, respectively, after adding cQD sheeting to bolus, mask sample and the combination of bolus and mask. Corresponding SNR is improved by about 62.78%, 56.77%, and 68.80%, respectively. Through the sheeting, optical images with SNR > 5 can be obtained in the presence of ambient light and it can be improved through combining with a band-pass filter. When red ambient lights are on, the SNR is increased by about 98.85% after adding a specific filter. CONCLUSION: Through a combination of cQD sheeting and corresponding filter, light intensity and SNR of optical images can be increased significantly, and it shed new light on the promotion of the clinical application of optical imaging to visualize the beam in radiotherapy.


Asunto(s)
Puntos Cuánticos , Humanos , Imagen Óptica , Fotones , Fantasmas de Imagen , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda