Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 995
Filtrar
1.
Cell ; 184(15): 3899-3914.e16, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34237254

RESUMEN

The impact of the microbiome on HIV disease is widely acknowledged although the mechanisms downstream of fluctuations in microbial composition remain speculative. We detected rapid, dynamic changes in translocated microbial constituents during two years after cART initiation. An unbiased systems biology approach revealed two distinct pathways driven by changes in the abundance ratio of Serratia to other bacterial genera. Increased CD4 T cell numbers over the first year were associated with high Serratia abundance, pro-inflammatory innate cytokines, and metabolites that drive Th17 gene expression signatures and restoration of mucosal integrity. Subsequently, decreased Serratia abundance and downregulation of innate cytokines allowed re-establishment of systemic T cell homeostasis promoting restoration of Th1 and Th2 gene expression signatures. Analyses of three other geographically distinct cohorts of treated HIV infection established a more generalized principle that changes in diversity and composition of translocated microbial species influence systemic inflammation and consequently CD4 T cell recovery.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Terapia Antirretroviral Altamente Activa , Biodiversidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocinas/sangre , Estudios de Cohortes , Glucólisis , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Humanos , Inflamación/genética , Inflamación/patología , Mitocondrias/metabolismo , Monocitos/metabolismo , Ácidos Nucleicos/sangre , Análisis de Componente Principal , Serratia/fisiología , Células TH1/inmunología , Células Th2/inmunología , Transcripción Genética , Uganda , Carga Viral/inmunología
2.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007262

RESUMEN

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Asunto(s)
Inmunización Pasiva/métodos , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Productos del Gen env/inmunología , Productos del Gen gag/inmunología , Productos del Gen pol/inmunología , VIH-1/inmunología , Inmunoglobulina G/inmunología , Macaca mulatta/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología
3.
Nat Immunol ; 22(10): 1294-1305, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556879

RESUMEN

Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inmunogenicidad Vacunal/inmunología , Vacunas Virales/inmunología , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Expresión Génica/inmunología , Vectores Genéticos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunización/métodos , Primates/inmunología , Primates/virología , Vacunación/métodos
4.
Immunity ; 56(5): 1132-1147.e6, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37030290

RESUMEN

HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8+ T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8+ T cells with HIV-infected memory CD4+ T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4+ T cell survival, quiescence, and stemness. Collectively, these pathways negatively regulated HIV expression and ultimately promoted the establishment of latency. As shown previously, we observed that macrophages, but not B cells, promoted latency in CD4+ T cells. The identification of CD8-specific mechanisms of pro-latency activity may favor the development of approaches to eliminate the viral reservoir in people with HIV.


Asunto(s)
Infecciones por VIH , Humanos , Linfocitos T CD8-positivos , Latencia del Virus , Linfocitos T CD4-Positivos , Replicación Viral
5.
Plant Physiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820143

RESUMEN

ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well-defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type (WT) and light signaling mutants in light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 (pin2) and PIN-FORMED 2 (pin3) mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding Reduced Residual Arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b- (RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signalling and other miRNA-mediated pathways.

6.
Nat Mater ; 22(8): 977-984, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308547

RESUMEN

Photoinduced spin-charge interconversion in semiconductors with spin-orbit coupling could provide a route to optically addressable spintronics without the use of external magnetic fields. However, in structurally disordered polycrystalline semiconductors, which are being widely explored for device applications, the presence and role of spin-associated charge currents remains unclear. Here, using femtosecond circular-polarization-resolved pump-probe microscopy on polycrystalline halide perovskite thin films, we observe the photoinduced ultrafast formation of spin domains on the micrometre scale formed through lateral spin currents. Micrometre-scale variations in the intensity of optical second-harmonic generation and vertical piezoresponse suggest that the spin-domain formation is driven by the presence of strong local inversion symmetry breaking via structural disorder. We propose that this leads to spatially varying Rashba-like spin textures that drive spin-momentum-locked currents, leading to local spin accumulation. Ultrafast spin-domain formation in polycrystalline halide perovskite films provides an optically addressable platform for nanoscale spin-device physics.

7.
Blood ; 140(17): 1858-1874, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35789258

RESUMEN

The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.


Asunto(s)
Contractura , Leucemia de Células B , Osteocondroma , Humanos , Calcineurina/genética , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Recurrencia Local de Neoplasia , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo
8.
Br J Dermatol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736216

RESUMEN

BACKGROUND: Autofluorescence (AF) - Raman spectroscopy is a technology that can detect residual basal cell carcinoma (BCC) on the resection margin of fresh surgically excised tissue specimens. The technology does not require tissue fixation, staining, labelling, or sectioning, and provides quantitative diagnosis maps of the surgical margins in 30 minutes. OBJECTIVES: To determine the accuracy of the AF-Raman instrument to detect incomplete excisions of BCC during Mohs micrographic surgery, using histology as reference standard. METHODS: Skin layers from 130 patients undergoing Mohs surgery at the Nottingham University Hospitals NHS Trust (September 2022 to July 2023) were investigated with the AF-Raman instrument. The layers were measured fresh, immediately after excision. The AF-Raman results and the intra-operative assessment by Mohs surgeons were compared to a post-operative consensus-derived reference produced by three dermatopathologists. The sensitivity, specificity, positive predictive value, and negative predictive value were calculated. RESULTS: The AF-Raman analysis was successfully completed for 125 out of the 130 layers. The AF-Raman analysis covered 91% of the specimen surface area on average, with the lowest being 87% for eyelid and the highest being 94% for forehead specimens. The AF-Raman instrument identified positive margins in 24 out of 36 BCC-positive cases, resulting in a 67% sensitivity (95% confidence intervals (CI): 49%-82%) and negative margins in 65 out of 89 BCC-negative cases, resulting in a 73% specificity (95% CI 63%-82%). Only one out of the 12 false negative cases was caused by misclassification by the AF-Raman algorithm. The other 11 false negatives cases were produced because no valid Raman signal was recorded at the location of the residual BCC due to either occlusion by blood or poor contact between tissue and cassette window. The intra-operative diagnosis by Mohs surgeons identified positive margins in 31 out of 36 BCC-positive cases, 86% sensitivity (95% CI: 70%-95%), and negative margins in 79 out of 89 BCC-negative cases, 89% specificity (95% CI: 81%-95%). CONCLUSIONS: This study shows that the AF-Raman instrument has potential for intra-operative microscopic assessment of surgical margins in surgery of BCC. Further improvements are required for tissue processing to ensure complete coverage of the surgical specimens. ClinicalTrials.gov ID NCT03482622.

9.
Crit Care ; 28(1): 18, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212826

RESUMEN

BACKGROUND: Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. METHODS: We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. RESULTS: We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. CONCLUSIONS: The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.


Asunto(s)
Microbioma Gastrointestinal , Micobioma , Sepsis , Humanos , Disbiosis/complicaciones , Disbiosis/microbiología , Candida , Bacterias , Sepsis/complicaciones , Hongos
10.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849931

RESUMEN

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Asunto(s)
Quitosano , Emulsiones , Hidrogeles , Nanopartículas del Metal , Quercetina , Plata , Piel , Cicatrización de Heridas , Quercetina/química , Quercetina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Animales , Emulsiones/química , Ratones , Humanos , Piel/efectos de los fármacos , Piel/lesiones , Nanopartículas del Metal/química , Plata/química , Hidrogeles/química , Materiales Biocompatibles/química , Vendajes , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Celulosa/química , Masculino , Regeneración/efectos de los fármacos , Células HaCaT , Oxidación-Reducción , Metilgalactósidos
11.
Tetrahedron Lett ; 1402024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38586565

RESUMEN

We describe a stereoselective synthesis of an optically active (1R, 3aS, 5R, 6S, 7aR)-octahydro-1,6-epoxy-isobenzo-furan-5-ol derivative. This stereochemically defined heterocycle serves as a high-affinity ligand for a variety of HIV-1 protease inhibitors. The key synthetic steps involve a highly enantioselective enzymatic desymmetrization of meso-1,2(dihydroxymethyl)cyclohex-4-ene and conversion of the resulting optically active alcohol to a methoxy hexahydroisobenzofuran derivative. A substrate controlled stereoselective dihydroxylation afforded syn-1,2-diols. Oxidation of diol provided the substituted 1,2-diketone and L-Selectride reduction provided the corresponding inverted syn-1,2-diols. Acid catalyzed cyclization furnished the ligand alcohol in optically active form.

12.
J Am Chem Soc ; 145(4): 2499-2510, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36683341

RESUMEN

Intramolecular singlet fission (iSF) facilitates single-molecule exciton multiplication, converting an excited singlet state to a pair of triplet states within a single molecule. A critical parameter in determining the feasibility of SF-enhanced photovoltaic designs is the triplet energy; many existing iSF materials have triplet energies too low for efficient transfer to silicon via a photon multiplier scheme. In this work, a series of six novel dimers based upon the high-triplet-energy, SF-active chromophore, 1,6-diphenyl-1,3,5-hexatriene (DPH) [E(T1) ∼ 1.5 eV], were designed, synthesized, and characterized. Transient absorption spectroscopy and fluorescence lifetime studies reveal that five of the dimers display iSF activity, with time constants for singlet fission varying between 7 ± 2 ps and 2.2 ± 0.2 ns and a high triplet yield of 163 ± 63% in the best-performing dimer. A strong dependence of the rate of fission on the coupling geometry is demonstrated. For optimized iSF behavior, close spatial proximity and minimal through-bond communication are found to be crucial for balancing the rate of SF against the reverse recombination process.

13.
Emerg Infect Dis ; 29(11): 2406-2408, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877682

RESUMEN

Scedosporium aurianticum infection developed in 2 recipients of kidney transplants in India, acquired from the same deceased near-drowning donor. Given the substantial risk for death associated with Scedosporium infection among solid-organ transplant recipients, safety protocols for organ transplantation from nearly drowned donors should be thoroughly revaluated and refined.


Asunto(s)
Trasplante de Riñón , Ahogamiento Inminente , Trasplante de Órganos , Humanos , Trasplante de Riñón/efectos adversos , Donantes de Tejidos
14.
PLoS Pathog ; 17(9): e1009941, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34559866

RESUMEN

The metabolic signaling pathways that drive pathologic tissue inflammation and damage in humans with pulmonary tuberculosis (TB) are not well understood. Using combined methods in plasma high-resolution metabolomics, lipidomics and cytokine profiling from a multicohort study of humans with pulmonary TB disease, we discovered that IL-1ß-mediated inflammatory signaling was closely associated with TCA cycle remodeling, characterized by accumulation of the proinflammatory metabolite succinate and decreased concentrations of the anti-inflammatory metabolite itaconate. This inflammatory metabolic response was particularly active in persons with multidrug-resistant (MDR)-TB that received at least 2 months of ineffective treatment and was only reversed after 1 year of appropriate anti-TB chemotherapy. Both succinate and IL-1ß were significantly associated with proinflammatory lipid signaling, including increases in the products of phospholipase A2, increased arachidonic acid formation, and metabolism of arachidonic acid to proinflammatory eicosanoids. Together, these results indicate that decreased itaconate and accumulation of succinate and other TCA cycle intermediates is associated with IL-1ß-mediated proinflammatory eicosanoid signaling in pulmonary TB disease. These findings support host metabolic remodeling as a key driver of pathologic inflammation in human TB disease.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Inflamación/metabolismo , Transducción de Señal/fisiología , Tuberculosis Pulmonar/metabolismo , Humanos
15.
Plant Physiol ; 189(3): 1397-1415, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35325214

RESUMEN

Small molecules, such as peptides and miRNAs, are crucial regulators of plant growth. Here, we show the importance of cross-talk between miPEP858a (microRNA858a-encoded peptide)/miR858a and phytosulfokine (PSK4) in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana). Genome-wide expression analysis suggested modulated expression of PSK4 in miR858a mutants and miR858a-overexpressing (miR858aOX) plants. The silencing of PSK4 in miR858aOX plants compromised growth, whereas overexpression of PSK4 in the miR858a mutant rescued the developmental defects. The exogenous application of synthetic PSK4 further complemented the plant development in mutant plants. Exogenous treatment of synthetic miPEP858a in the PSK4 mutant led to clathrin-mediated internalization of the peptide; however, it did not enhance growth as is the case in wild-type plants. We also demonstrated that MYB3 is an important molecular component participating in the miPEP858a/miR858a-PSK4 module. Finally, our work highlights the signaling between miR858a/miPEP858a-MYB3-PSK4 in modulating the expression of key elements involved in auxin responses, leading to the regulation of growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , MicroARNs/genética , Péptidos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación/genética , Péptidos/metabolismo , Desarrollo de la Planta
16.
FASEB J ; 36(11): e22579, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183323

RESUMEN

Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. Resolvin D1 (RvD1) is derived from ω-3 polyunsaturated fatty acids and is involved in the resolution phase of chronic inflammatory diseases. The aim of this study was to decipher the protective role of RvD1 via formyl peptide receptor 2 (FPR2) receptor signaling in attenuating abdominal aortic aneurysms (AAA). The elastase-treatment model of AAA in C57BL/6 (WT) mice and human AAA tissue was used to confirm our hypotheses. Elastase-treated FPR2-/- mice had a significant increase in aortic diameter, proinflammatory cytokine production, immune cell infiltration (macrophages and neutrophils), elastic fiber disruption, and decrease in smooth muscle cell α-actin expression compared to elastase-treated WT mice. RvD1 treatment attenuated AAA formation, aortic inflammation, and vascular remodeling in WT mice, but not in FPR2-/- mice. Importantly, human AAA tissue demonstrated significantly decreased FPR2 mRNA expression compared to non-aneurysm human aortas. Mechanistically, RvD1/FPR2 signaling mitigated p47phox phosphorylation and prevented hallmarks of ferroptosis, such as lipid peroxidation and Nrf2 translocation, thereby attenuating HMGB1 secretion. Collectively, this study demonstrates RvD1-mediated immunomodulation of FPR2 signaling on macrophages to mitigate ferroptosis and HMGB1 release, leading to resolution of aortic inflammation and remodeling during AAA pathogenesis.


Asunto(s)
Aneurisma de la Aorta Abdominal , Ferroptosis , Proteína HMGB1 , Actinas/metabolismo , Animales , Aneurisma de la Aorta Abdominal/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Proteína HMGB1/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Elastasa Pancreática/metabolismo , ARN Mensajero/metabolismo , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina , Remodelación Vascular
17.
Soft Matter ; 19(34): 6589-6603, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37605525

RESUMEN

Graphene quantum dots (GQDs) are prepared and characterized via X-ray diffraction (XRD), UV-Visible spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL). GQDs are doped (5 mg and 10 mg) in the lyotropic liquid crystalline (LLC) lamellar and hexagonal phases to prepare GQD/LLC nanocolloids. Polarizing optical microscopy and X-ray diffraction measurement reveals that GQDs do not affect the lamellar and hexagonal LLC structures and may organize on their interface. Pure LLC phases and nanocolloids are studied for steady and dynamic rheological behavior. LLC phases and GQD/LLC nanocolloids possess shear thinning and frequency dependent liquid viscoelastic behavior. A complex moduli study of LLCs and GQD/LLC nanocolloids is carried out which indicates the gel to viscous transition in LLCs and GQD/LLC nanocolloids as a function of frequency. LLC phases and GQD/LLC nanocolloids are tested for antibacterial activity against Listeria ivanovii. The effect of surfactant concentration, LLC phase geometry and GQD concentration has been studied and discussed. A probable mechanism for the strong antimicrobial activity of LLCs and GQD/LLC nanocolloids is presented considering intermolecular interactions. The viscoelastic behavior and strong antibacterial activity (inhibition zone 49.2 mm) of LLCs and GQD/LLC nanocolloids make them valuable candidates for lubrication, cleaning, cosmetics and pharmaceutical applications.


Asunto(s)
Grafito , Cristales Líquidos , Puntos Cuánticos , Antibacterianos/farmacología , Microscopía de Fuerza Atómica
18.
Bioorg Med Chem Lett ; 96: 129489, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37770002

RESUMEN

We report here the synthesis and biological evaluation of a series of small molecule SARS-CoV-2 PLpro inhibitors. We compared the activity of selected compounds in both SARS-CoV-1 and SARS-CoV-2 PLpro inhibitory and antiviral assays. We have synthesized and evaluated several new structural variants of previous leads against SARS-CoV-2 PLpro. The replacement of the carboxamide functionality with sulfonamide derivatives resulted in PLpro inhibitors with potent PLpro inhibitory and antiviral activity in VeroE6 cells similar to GRL0617. To obtain molecular insight, we created an optimized model of a potent sulfonamide derivative in the SARS-CoV-2 PLpro active site.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Sulfonamidas/farmacología
19.
Phys Chem Chem Phys ; 25(5): 3737-3744, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36683490

RESUMEN

The data storage requirement in the digital world is increasing day by day with the advancement of the internet of things. In this respect, nonvolatile resistive random-access memory is an option that provides high density and low power data storage capabilities. In this work, zero-dimensional colloidal CdS quantum dots and a polymer composite at an appropriate ratio were used to fabricate a memristive device. Comparison with a pristine CdS quantum dot-based device reveals that a surrounding matrix around the quantum dots is needed for observing memristive behavior. The quantum dots embedded in the polymer matrix device showed extremely stable electrical switching behavior that can be operated for more than 300 cycles and 60 000 seconds. Moreover, the device needs extremely low power to operate at a very high speed. The smooth surface morphology dictates a charge trapping mechanism for the switching phenomenon; however, an interplay between different charge transport mechanisms leads to the fast switching and high on-off ratio of the device.

20.
J Electrocardiol ; 81: 169-175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37741271

RESUMEN

ECG quality assessment is crucial for reducing false alarms and physician strain in automated diagnosis of cardiovascular diseases. Recent researches have focused on constructing an automatic noisy ECG record rejection mechanism. This work develops a noisy ECG record rejection system using scalogram and Tucker tensor decomposition. The system can reject ECG records, which cannot be analyzed or diagnosed. Scalogram of all 12­lead ECG signals per subject are stacked to form a 3-way tensor. Tucker tensor decomposition is applied with empirical settings to obtain the core tensor. The core tensor is reshaped to form the latent features set. When tested using the PhysioNet challenge 2011 dataset in five-fold cross validation settings, the RusBoost ensemble classifier proved to be a very reliable option, producing an accuracy of 92.4% along with sensitivity of 87.1% and specificity of 93.5%. According to the experimental findings, combining the scalogram with Tucker tensor decomposition yields competitive performance and has the potential to be used in actual evaluation of ECG quality.


Asunto(s)
Algoritmos , Electrocardiografía , Humanos , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda