Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Transgenic Res ; 28(1): 21-32, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30315482

RESUMEN

The alphacoronaviruses, transmissible gastroenteritis virus (TGEV) and Porcine epidemic diarrhea virus (PEDV) are sources of high morbidity and mortality in neonatal pigs, a consequence of dehydration caused by the infection and necrosis of enterocytes. The biological relevance of amino peptidase N (ANPEP) as a putative receptor for TGEV and PEDV in pigs was evaluated by using CRISPR/Cas9 to edit exon 2 of ANPEP resulting in a premature stop codon. Knockout pigs possessing the null ANPEP phenotype and age matched wild type pigs were challenged with either PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the enterocytes lining the ileum in ANPEP null pigs. The different receptor requirements for TGEV and PEDV have important implications in the development of new genetic tools for the control of enteric disease in pigs.


Asunto(s)
Aminopeptidasas/genética , Animales Modificados Genéticamente/genética , Infecciones por Coronavirus/genética , Coronavirus/patogenicidad , Aminopeptidasas/deficiencia , Animales , Animales Modificados Genéticamente/virología , Sistemas CRISPR-Cas , Coronavirus/genética , Infecciones por Coronavirus/virología , Enterocitos/enzimología , Enterocitos/virología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Porcinos , Virus de la Gastroenteritis Transmisible/patogenicidad
3.
Sci Rep ; 12(1): 5009, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322150

RESUMEN

Senecavirus A (SVA) is a cause of vesicular disease in pigs, and infection rates are rising within the swine industry. Recently, anthrax toxin receptor 1 (ANTXR1) was revealed as the receptor for SVA in human cells. Herein, the role of ANTXR1 as a receptor for SVA in pigs was investigated by CRISPR/Cas9 genome editing. Strikingly, ANTXR1 knockout (KO) pigs exhibited features consistent with the rare disease, GAPO syndrome, in humans. Fibroblasts from wild type (WT) pigs supported replication of SVA; whereas, fibroblasts from KO pigs were resistant to infection. During an SVA challenge, clinical symptoms, including vesicular lesions, and circulating viremia were present in infected WT pigs but were absent in KO pigs. Additional ANTXR1-edited piglets were generated that were homozygous for an in-frame (IF) mutation. While IF pigs presented a GAPO phenotype similar to the KO pigs, fibroblasts showed mild infection, and circulating SVA nucleic acid was decreased in IF compared to WT pigs. Thus, this new ANTXR1 mutation resulted in decreased permissiveness of SVA in pigs. Overall, genetic disruption of ANTXR1 in pigs provides a unique model for GAPO syndrome and prevents circulating SVA infection and clinical symptoms, confirming that ANTXR1 acts as a receptor for the virus.


Asunto(s)
Infecciones por Picornaviridae , Picornaviridae , Enfermedades de los Porcinos , Alopecia , Animales , Anodoncia , Trastornos del Crecimiento , Atrofias Ópticas Hereditarias , Fenotipo , Picornaviridae/genética , Enfermedades Raras , Receptores de Péptidos , Porcinos
4.
Transbound Emerg Dis ; 67(4): 1623-1632, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31999072

RESUMEN

Classical swine fever virus (CSFV) and pseudorabies virus (PRV) are two of the most significant trade-limiting pathogens affecting swine worldwide. Both viruses are endemic to China where millions of kilograms of feed ingredients are manufactured and subsequently imported into the United States. Although stability and oral transmission of both viruses through contaminated pork products has been demonstrated as a risk factor for transboundary spread, stability in animal feed ingredients had yet to be investigated. The objective of this study was to determine the survival of CSFV and variant PRV in 12 animal feeds and ingredients exposed to environmental conditions simulating a 37-day transpacific shipment. Virus was detected by PCR, virus isolation and nursery pig bioassay. CSFV and PRV nucleic acids were stable throughout the 37-day period in all feed matrices. Infectious CSFV was detected in two ingredients (conventional soybean meal and pork sausage casings) at 37 days post-contamination, whereas infectious PRV was detected in nine ingredients (conventional and organic soybean meal, lysine, choline, vitamin D, moist cat and dog food, dry dog food and pork sausage casings). This study demonstrates the relative stability of CSFV and PRV in different feed ingredients under shipment conditions and provides evidence that feed ingredients may represent important risk factors for the transboundary spread of these viruses.


Asunto(s)
Alimentación Animal/virología , Virus de la Fiebre Porcina Clásica/aislamiento & purificación , Peste Porcina Clásica/virología , Herpesvirus Suido 1/aislamiento & purificación , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Transportes , Animales , China , Virus de la Fiebre Porcina Clásica/patogenicidad , Virus de la Fiebre Porcina Clásica/fisiología , ADN Viral/genética , Contaminación de Alimentos , Genes Virales/genética , Herpesvirus Suido 1/patogenicidad , Herpesvirus Suido 1/fisiología , Modelos Teóricos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Medición de Riesgo , Factores de Riesgo , Porcinos
5.
Virology ; 541: 136-140, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32056711

RESUMEN

The coronaviruses, porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) represent important sources of neonatal diarrhea on pig farms. The requirement for aminopeptidase N (APN) as a receptor for TGEV, but not for PEDV, is well established. In this study, the biological relevance of APN as a receptor for PDCoV was tested by using CRISPR/Cas9 to knockout the APN gene, ANPEP, in pigs. Porcine alveolar macrophages (PAMs) from ANPEP knockout (KO) pigs showed resistance to PDCoV infection. However, lung fibroblast-like cells, derived from the ANPEP KO PAM cultures, supported PDCoV infection to high levels. The results suggest that APN is a receptor for PDCoV in PAMs but is not necessary for infection of lung-derived fibroblast cells. The infection of the ANPEP KO pigs with PDCoV further confirmed that APN is dispensable as a receptor for PDCoV.


Asunto(s)
Antígenos CD13/fisiología , Infecciones por Coronavirus/etiología , Receptores Virales/fisiología , Enfermedades de los Porcinos/etiología , Animales , Antígenos CD13/genética , Gastroenteritis Porcina Transmisible/etiología , Técnicas de Inactivación de Genes , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos
6.
Virus Res ; 271: 197678, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31381943

RESUMEN

Bovine leukemia virus (BLV) is a retrovirus that infects cattle and is associated with an increase in secondary infections. The objective of this study was to analyze the effect of BLV infection on cell viability, apoptosis and morphology of a bovine mammary epithelial cell line (MAC-T), as well as Toll like receptors (TLR) and cytokine mRNA expression. Our findings show that BLV infection causes late syncytium formation, a decrease in cell viability, downregulation of the anti-apoptotic gene Bcl-2, and an increase in TLR9 mRNA expression. Moreover, we analyzed how this stably infected cell line respond to the exposure to Staphylococcus aureus (S. aureus), a pathogen known to cause chronic mastitis. In the presence of S. aureus, MAC-T BLV cells had decreased viability and decreased Bcl-2 and TLR2 mRNA expression. The results suggest that mammary epithelial cells infected with BLV have altered the apoptotic and immune pathways, probably affecting their response to bacteria and favoring the development of mastitis.


Asunto(s)
Células Epiteliales/virología , Interacciones Huésped-Patógeno , Virus de la Leucemia Bovina/fisiología , Animales , Apoptosis/genética , Biomarcadores , Bovinos , Línea Celular , Proliferación Celular , Supervivencia Celular , Citocinas/metabolismo , Efecto Citopatogénico Viral , Leucosis Bovina Enzoótica/metabolismo , Leucosis Bovina Enzoótica/virología , Células Epiteliales/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/virología , Mastitis Bovina/metabolismo , Mastitis Bovina/virología , Receptores Toll-Like/metabolismo
7.
Vet Microbiol ; 235: 10-20, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31282366

RESUMEN

African Swine Fever Virus (ASFV) causes a hemorrhagic disease in swine and wild boars with a fatality rate close to 100%. Less virulent strains cause subchronic or chronic forms of the disease. The virus is endemic in sub-Saharan Africa and an outbreak in Georgia in 2007 spread to Armenia, Russia, Ukraine, Belarus, Poland, Lithuania, and Latvia. In August 2018, there was an outbreak in China and in April 2019, ASFV was reported in Vietnam and Cambodia. Since no vaccine or treatment exists, a vaccine is needed to safeguard the swine industry. Previously, we evaluated immunogenicity of two adenovirus-vectored cocktails containing ASFV antigens and demonstrated induction of unprecedented robust antibody and T cell responses, including cytotoxic T lymphocytes. In the present study, we evaluated protective efficacy of both cocktails by intranasal challenge of pigs with ASFV-Georgia 2007/1. A nine antigen cocktail-(I) formulated in BioMize adjuvant induced strong IgG responses, but when challenged, the vaccinees had more severe reaction relative to the controls. A seven antigen cocktail-(II) was evaluated using two adjuvants: BioMize and ZTS-01. The BioMize formulation induced stronger antibody responses, but 8/10 vaccinees and 4/5 controls succumbed to the disease or reached experimental endpoint at 17 days post-challenge. In contrast, the ZTS-01 formulation induced weaker antibody responses, but 4/9 pigs succumbed to the disease while the 5 survivors exhibited low clinical scores and no viremia at 17 days post-challenge, whereas 4/5 controls succumbed to the disease or reached experimental endpoint. Overall, none of the immunogens conferred statistically significant protection.


Asunto(s)
Fiebre Porcina Africana/prevención & control , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Vacunas Virales/inmunología , Adenoviridae , Administración Intranasal , Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana , Animales , Antígenos Virales/genética , Inmunoglobulina G/sangre , Porcinos , Linfocitos T Citotóxicos/inmunología , Vacunas de Subunidad/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/genética , Viremia , Virulencia
9.
Front Microbiol ; 9: 1631, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083142

RESUMEN

Porcine circovirus associated disease (PCVAD) is a term used to describe the multi-factorial disease syndromes caused by porcine circovirus type 2 (PCV-2), which can be reproduced in an experimental setting through the co-infection of pigs with PCV-2 and porcine reproductive and respiratory syndrome virus (PRRSV). The resulting PCVAD-affected pigs represent a subpopulation within the co-infected group. In co-infection studies, the presence of increased microbiome diversity is linked to a reduction in clinical signs. In this study, fecal microbiota transplantation (FMT) was investigated as a means to prevent PCVAD in pigs co-infected with PRRSV and PCV-2d. The sources of the FMT material were high-parity sows with a documented history of high health status and robust litter characteristics. The analysis of the donated FMT material showed the absence of common pathogens along with the presence of diverse microbial phyla and families. One group of pigs (n = 10) was administered the FMT while a control group (n = 10) was administered a sterile mock-transplant. Over the 42-day post-infection period, the FMT group showed fewer PCVAD-affected pigs, as evidenced by a significant reduction in morbidity and mortality in transplanted pigs, along with increased antibody levels. Overall, this study provides evidence that FMT decreases the severity of clinical signs following co-infection with PRRSV and PCV-2 by reducing the prevalence of PCVAD.

11.
PLoS One ; 13(3): e0194509, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29558524

RESUMEN

The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients ("high-risk combinations") under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels.


Asunto(s)
Alimentación Animal/virología , Modelos Teóricos , Transportes , Virus/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Medición de Riesgo/métodos , Factores de Riesgo , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Virosis/prevención & control , Virosis/veterinaria , Virosis/virología , Virus/clasificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda