Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cancer Cell Int ; 23(1): 320, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087345

RESUMEN

Colorectal neoplasms are one of the deadliest diseases among all cancers worldwide. Thymoquinone (TQ) is a natural compound of Nigella sativa that has been used in traditional medicine against a variety of acute/chronic diseases such as asthma, bronchitis, rheumatism, headache, back pain, anorexia, amenorrhea, paralysis, inflammation, mental disability, eczema, obesity, infections, depression, dysentery, hypertension, gastrointestinal, cardiovascular, hepatic, and renal disorders. This review aims to present a detailed report on the studies conducted on the anti-cancer properties of TQ against colorectal cancer, both in vitro and in vivo. TQ stands as a promising natural therapeutic agent that can enhance the efficacy of existing cancer treatments while minimizing the associated adverse effects. The combination of TQ with other anti-neoplastic agents promoted the efficacy of existing cancer treatments. Further research is needed to acquire a more comprehensive understanding of its exact molecular targets and pathways and maximize its clinical usefulness. These investigations may potentially aid in the development of novel techniques to combat drug resistance and surmount the obstacles presented by chemotherapy and radiotherapy.

2.
Pathol Res Pract ; 260: 155374, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889494

RESUMEN

The escalating global incidence of cancer, which results in millions of fatalities annually, underscores the pressing need for effective pharmacological interventions across diverse cancer types. Long noncoding RNAs (lncRNAs), a class of RNA molecules that lack protein-coding capacity but profoundly impact gene expression regulation, have emerged as pivotal players in key cellular processes, including proliferation, apoptosis, metastasis, cellular metabolism, and drug resistance. Among natural compounds, quercetin, a phenolic compound abundantly present in fruits and vegetables has garnered attention due to its significant anticancer properties. Quercetin demonstrates the ability to inhibit cancer cell growth and induce apoptosis-a process often impaired in malignant cells. In this comprehensive review, we delve into the therapeutic potential of quercetin in cancer treatment, with a specific focus on its intricate interactions with lncRNAs. We explore how quercetin modulates lncRNA expression and function to exert its anticancer effects. Notably, quercetin suppresses oncogenic lncRNAs that drive cancer development and progression while enhancing tumor-suppressive lncRNAs that impede cancer growth and dissemination. Additionally, we discuss quercetin's role as a chemopreventive agent, which plays a crucial role in mitigating cancer risk. We address research challenges and future directions, emphasizing the necessity for in-depth mechanistic studies and strategies to enhance quercetin's bioavailability and target specificity. By synthesizing existing knowledge, this review underscores quercetin's promising potential as a novel therapeutic strategy in the ongoing battle against cancer, offering fresh insights and avenues for further investigation in this critical field.


Asunto(s)
Neoplasias , Quercetina , ARN Largo no Codificante , Quercetina/farmacología , Quercetina/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos
3.
Mini Rev Med Chem ; 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37642002

RESUMEN

Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.

4.
Int J Biol Macromol ; 241: 124508, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37085076

RESUMEN

Colorectal cancer is among the frequently diagnosed cancers with high mortality rates around the world. Polyphenolic compounds such as flavonoids are secondary plant metabolites which exhibit anti-cancer activities along with anti-inflammatory effects. However, due to their hydrophobicity, sensitivity to degradation and low bioavailability, therapeutic effects have shown poor therapeutic effect. Nano delivery systems such as nanoliposomes, nanomicelles, silica nanoparticles have been investigated to overcome these difficulties. This review provides a summary of the efficiency of certain flavonoids and polyphenols (apigenin, genistein, resveratrol, quercetin, silymarin, catechins, luteolin, fisetin, gallic acid, rutin, and curcumin) on colorectal cancer models. It comprehensively discusses the influence of nano-formulation of flavonoids on their biological functions, including cellular uptake rate, bioavailability, solubility, and cytotoxicity, as well as their potential for reducing colorectal cancer tumor size under in vivo situations.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Humanos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/química , Quercetina/química , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/química , Nanopartículas/química , Neoplasias Colorrectales/tratamiento farmacológico
5.
Cancers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38001694

RESUMEN

Prostate cancer (PC) is the second most common type of cancer and the leading cause of death among men worldwide. Preventing the progression of cancer after treatments such as radical prostatectomy, radiation therapy, and hormone therapy is a major concern faced by prostate cancer patients. Inflammation, which can be caused by various factors such as infections, the microbiome, obesity and a high-fat diet, is considered to be the main cause of PC. Inflammatory cells are believed to play a crucial role in tumor progression. Therefore, nonsteroidal anti-inflammatory drugs along with their effects on the treatment of inflammation-related diseases, can prevent cancer and its progression by suppressing various inflammatory pathways. Recent evidence shows that nonsteroidal anti-inflammatory drugs are effective in the prevention and treatment of prostate cancer. In this review, we discuss the different pathways through which these drugs exert their potential preventive and therapeutic effects on prostate cancer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda