Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Genet ; 13(5): e1006829, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28558063

RESUMEN

All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.


Asunto(s)
Aminoácidos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Presión Osmótica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Subunidades alfa de la Proteína de Unión al GTP/genética , Regulación Fúngica de la Expresión Génica , Metaboloma , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Yeast ; 36(8): 495-518, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31022772

RESUMEN

The pheromone response pathway of the yeast Saccharomyces cerevisiae is a well-established model for the study of G proteins and mitogen-activated protein kinase (MAPK) cascades. Our longstanding ability to combine sophisticated genetic approaches with established functional assays has provided a thorough understanding of signalling mechanisms and regulation. In this report, we compare new and established methods used to quantify pheromone-dependent MAPK phosphorylation, transcriptional induction, mating morphogenesis, and gradient tracking. These include both single-cell and population-based assays of activity. We describe several technical advances, provide example data for benchmark mutants, highlight important differences between newer and established methodologies, and compare the advantages and disadvantages of each as applied to the yeast model. Quantitative measurements of pathway activity have been used to develop mathematical models and reveal new regulatory mechanisms in yeast. It is our expectation that experimental and computational approaches developed in yeast may eventually be adapted to human systems biology and pharmacology.


Asunto(s)
Feromonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfogénesis , Mutación , Feromonas/genética , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual , Biología de Sistemas , Transcripción Genética
3.
Sci Signal ; 8(359): ra5, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25587192

RESUMEN

Signaling pathways can behave as switches or rheostats, generating binary or graded responses to a given cell stimulus. We evaluated whether a single signaling pathway can simultaneously encode a switch and a rheostat. We found that the kinase Hog1 mediated a bifurcated cellular response: Activation and commitment to adaptation to osmotic stress are switchlike, whereas protein induction and the resolution of this commitment are graded. Through experimentation, bioinformatics analysis, and computational modeling, we determined that graded recovery is encoded through feedback phosphorylation and a gene induction program that is both temporally staggered and variable across the population. This switch-to-rheostat signaling mechanism represents a versatile stress adaptation system, wherein a broad range of inputs generate an "all-in" response that is later tuned to allow graded recovery of individual cells over time.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Presión Osmótica/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , Biología Computacional , Retroalimentación Fisiológica/fisiología , Citometría de Flujo , Immunoblotting , Mediciones Luminiscentes , Análisis por Micromatrices , Fosforilación , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda