Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Sci Technol ; 57(48): 20053-20063, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37936384

RESUMEN

Modulating oxygen vacancies of catalysts through crystal facet engineering is an innovative strategy for boosting the activity for ozonation of catalytic volatile organic compounds (VOCs). In this work, three kinds of facet-engineered monoclinic NiO catalysts were successfully prepared and utilized for catalytic toluene ozonation (CTO). Density functional theory calculations revealed that Ni vacancies were more likely to form preferentially than O vacancies on the (110), (100), and (111) facets of monoclinic NiO due to the stronger Ni-vacancy formation ability, further affecting O-vacancy formation. Extensive characterizations demonstrated that Ni vacancies significantly promoted the formation of O vacancies and thus reactive oxygen species in the (111) facet of monoclinic NiO, among the three facets. The performance evaluation showed that the monoclinic NiO catalyst with a dominant (111) facet exhibits excellent performance for CTO, achieving a toluene conversion of ∼100% at 30 °C after reaction for 120 min under 30 ppm toluene, 210 ppm ozone, 45% relative humidity, and a space velocity of 120 000 h-1. This outperformed the previously reported noble/non-noble metal oxide catalysts used for CTO at room temperature. This study provided novel insight into the development of highly efficient facet-engineered catalysts for the elimination of catalytic VOCs.


Asunto(s)
Ozono , Compuestos Orgánicos Volátiles , Tolueno/química , Óxidos , Oxígeno , Catálisis
2.
Environ Sci Technol ; 56(22): 15695-15704, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36259958

RESUMEN

Mn-based catalysts hold the promise of practical applications in catalytic ozonation of toluene at room temperature, yet improvement of toluene conversion and COx selectivity remains challenging. Here, an innovative α-MnO2/ZSM-5 catalyst modified with SO42- was successfully prepared, and both characterizations and density functional theory (DFT) calculations showed that SO42- introduction facilitated the formation of oxygen vacancies, Lewis and Brönsted acid sites, and active oxygen species and enhanced the adsorption ability of toluene on α-MnO2/ZSM-5. Characterizations also showed that SO42- introduction made the catalyst possess larger specific surface area, superior reducibility, and stronger surface acidity. As a result, α-MnO2/ZSM-5 with a S/Mn molar ratio of 0.019 exhibited the best toluene conversion and COx selectivity, 87 and 94%, respectively, after the reaction for 8 h at 30 °C under an initial concentration of 5 ppm toluene and 45 ppm ozone, relative humidity of 45%, and space velocity of 32,000 h-1, far superior to those of non-noble catalysts reported to date under comparable reaction conditions. The synergistic role of increased oxygen vacancies and acid sites of α-MnO2/ZSM-5 modified with SO42- resulted in excellent toluene conversion and COx selectivity. The findings represented a critical step toward the rational design and synthesis of highly efficient catalysts for catalytic ozonation of toluene.

3.
Environ Sci Technol ; 56(10): 6282-6293, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35512288

RESUMEN

Microorganisms residing in the human respiratory tract can be exhaled, and they constitute a part of environmental microbiotas. However, the expiratory microbiota community and its associations with environmental microbiotas remain poorly understood. Here, expiratory bacteria and fungi and the corresponding microbiotas from the living environments were characterized by DNA amplicon sequencing of residents' exhaled breath condensate (EBC) and environmental samples collected from 14 residences in Nanjing, China. The microbiotas of EBC samples, with a substantial heterogeneity, were found to be as diverse as those of skin, floor dust, and airborne microbiotas. Model fitting results demonstrated the role of stochastic processes in the assembly of the expiratory microbiota. Using a fast expectation-maximization algorithm, microbial community analysis revealed that expiratory microbiotas were differentially associated with other types of microbiotas in a type-dependent and residence-specific manner. Importantly, the expiratory bacteria showed a composition similarity with airborne bacteria in the bathroom and kitchen environments with an average of 12.60%, while the expiratory fungi showed a 53.99% composition similarity with the floor dust fungi. These differential patterns indicate different relationships between expiratory microbiotas and the airborne microbiotas and floor dust microbiotas. The results here illustrated for the first time the associations between expiratory microbiotas and indoor microbiotas, showing a potential microbial exchange between the respiratory tract and indoor environment. Thus, improved hygiene and ventilation practices can be implemented to optimize the indoor microbial exposome, especially in indoor bathrooms and kitchens.


Asunto(s)
Contaminación del Aire Interior , Microbiota , Contaminación del Aire Interior/análisis , Bacterias/genética , Polvo/análisis , Hongos , Humanos , Ventilación
4.
Environ Sci Technol ; 53(22): 13332-13343, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31642660

RESUMEN

A series of Na-OMS-2 catalysts was prepared by a facile solid-state reaction method. Their physiochemical properties were characterized, and the catalytic activity for ozone decomposition was evaluated. The results showed that the introduction of Na+ in the tunnel framework of OMS-2 facilitated lattice defect formation, which significantly enhanced oxygen vacancies, which are believed to be the active sites for ozone decomposition. Density functional theory calculations also showed that both the oxygen vacancy formation energy and ozone adsorption energy over Na-OMS-2 decreased because of Na+ introduction. Sodium ion introduction significantly improved the OMS-2 catalytic activity for ozone decomposition. The Na-OMS-2 catalyst with a Na/Mn molar ratio of 1/4 exhibited ozone conversion at 92.5% at 25 ± 1 °C after reaction for 6 h under an initial ozone concentration of 45 ± 2 ppm, a relative humidity of 30 ± 2%, and a space velocity of 660 000 h-1. This showed that this catalyst was far superior to manganese oxide catalysts reported to date. Furthermore, the research results also showed that the catalytic activity of Na-OMS-2 deactivated by the accumulation of oxygen-related intermediates was recovered by calcination at 425 °C under N2 atmosphere for 0.5 h. Finally, a complete mechanism for ozone decomposition, catalyst deactivation, and regeneration was proposed.


Asunto(s)
Ozono , Adsorción , Catálisis , Oxígeno , Sodio
5.
Environ Sci Technol ; 53(21): 12506-12518, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31536707

RESUMEN

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and ß-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Beijing , China , Finlandia
6.
Environ Sci Technol ; 52(20): 11642-11651, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30234977

RESUMEN

Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, ß-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and ß-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H2O2 and O2•-. The total molar yields of ROS of isoprene and ß-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H2O2 and the adverse health effects of anthropogenic SOA from aromatic precursors.


Asunto(s)
Contaminantes Atmosféricos , Agua , Aerosoles , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno
7.
Environ Sci Technol ; 52(19): 10975-10984, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30043612

RESUMEN

Despite its emerging significant public health concern, the presence of antibiotic resistance genes (ARGs) in urban air has not received significant attention. Here, we profiled relative abundances (as a fraction, normalized by 16S rRNA gene) of 30 ARG subtypes resistant to seven common classes of antibiotics, which are quinolones, ß-lactams, macrolides, tetracyclines, sulfonamides, aminoglycosides, and vancomycins, in ambient total particulate matter (PM) using a novel protocol across 19 world cities. In addition, their longitudinal changes in PM2.5 samples in Xi'an, China as an example were also studied. Geographically, the ARGs were detected to vary by nearly 100-fold in their abundances, for example, from 0.07 (Bandung, Indonesia) to 5.6 (San Francisco, USA). The ß-lactam resistance gene blaTEM was found to be most abundant, seconded by quinolone resistance gene qepA; and their corresponding relative abundances have increased by 178% and 26%, respectively, from 2004 to 2014 in Xi'an. Independent of cities, gene network analysis indicates that airborne ARGs were differentially contributed by bacterial taxa. Results here reveal that urban air is being polluted by ARGs, and different cities are challenged with varying health risks associated with airborne ARG exposure. This work highlights the threat of urban airborne transmission of ARGs and the need of redefining our current air quality standards in terms with public health.


Asunto(s)
Antibacterianos , Genes Bacterianos , China , Ciudades , Farmacorresistencia Microbiana , Indonesia , ARN Ribosómico 16S , San Francisco , Encuestas y Cuestionarios
8.
Environ Sci Technol ; 51(8): 4119-4141, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28326768

RESUMEN

Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.


Asunto(s)
Alérgenos/inmunología , Cambio Climático , Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Hipersensibilidad
9.
Angew Chem Int Ed Engl ; 53(20): 5038-43, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24668898

RESUMEN

Probing interactions of biological systems at the molecular level is of great importance to fundamental biology, diagnosis, and drug discovery. A rational bioassay design of lithographically integrating individual point scattering sites into electrical circuits is capable of realizing real-time, label-free biodetection of influenza H1N1 viruses with single-molecule sensitivity and high selectivity by using silicon nanowires as local reporters in combination with microfluidics. This nanocircuit-based architecture is complementary to more conventional optical techniques, but has the advantages of no bleaching problems and no fluorescent labeling. These advantages offer a promising platform for exploring dynamics of stochastic processes in biological systems and gaining information from genomics to proteomics to improve accurate molecular and even point-of-care clinical diagnosis.


Asunto(s)
Electricidad , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Nanocables , Silicio/química
10.
Sci Total Environ ; 926: 171879, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521271

RESUMEN

Bacteria and fungi are ubiquitous throughout built environments and are suspended in the air, potentially affecting human health. However, the impacts of climate zones on the diversity, structure, and stochastic assembly of indoor airborne microbes remain unknown. This study comprehensively analyzed indoor airborne microbes across five climate zones in China during the summer and winter using high-throughput sequencing. The diversity and structure of indoor airborne communities vary across climatic zones. A random forest model was used to identify biomarkers in different climate zones. The results showed no relationship between the biomarkers and their rankings in mean relative abundance. The Sloan neutral model fitting results indicated that the impact of climate zones on the stochastic process in the assembly of indoor airborne microbes was considerably more important than that of seasons. Additionally, the influence of seasons on the diversity, structure, and stochastic assembly process of indoor airborne microbes differed among different climate zones. The diversity, structure, and stochastic assembly processes of bacteria present distinctive outcomes in climate zones and seasons compared with those of fungi. Overall, these findings indicate that customized strategies are necessary to manage indoor airborne microbial communities in each climate zone, season, and for specific microbial species.


Asunto(s)
Contaminación del Aire Interior , Microbiota , Humanos , Estaciones del Año , Hongos , Bacterias , Microbiología del Aire , Biomarcadores , Contaminación del Aire Interior/análisis
11.
Environ Sci Technol ; 47(18): 10660-6, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23952908

RESUMEN

Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 µm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.


Asunto(s)
Aire Acondicionado , Contaminantes Atmosféricos/análisis , Automóviles , Bacterias/aislamiento & purificación , Endotoxinas/análisis , Hongos/aislamiento & purificación , Aerosoles , Microbiología del Aire , Bacterias/clasificación , Filtración , Hongos/clasificación
12.
Nano Lett ; 12(7): 3722-30, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22731392

RESUMEN

Influenza epidemics worldwide result in substantial economic and human costs annually. However, rapid and reliable flu diagnosis methods are significantly lacking. Here we have demonstrated the selective detection of influenza A viruses down to 29 viruses/µL in clinical exhaled breath condensate (EBC) samples (diluted by 100-fold) within minutes using silicon nanowire (SiNW) sensor devices. For 90% of the cases, we have observed that EBC samples tested positive or negative by gold standard method RT-qPCR generated corresponding positive or negative SiNW sensor responses. High selectivity of SiNW sensing was also demonstrated using H1N1 viruses, 8 iso PGF 2a, and inert nanoparticles. Finally, magnetic beads were shown capable of enhancing SiNW sensing directly for low level viruses and 8 iso PGF 2a. When calibrated by virus standards and EBC controls, our work suggests that the SiNW sensor device can be reliably applied to the diagnosis of flu in a clinical setting with 2 orders of magnitude less time compared to the gold standard method RT-qPCR.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Gripe Humana/diagnóstico , Nanocables , Silicio/química , Pruebas Respiratorias , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/genética , Tamaño de la Partícula , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Propiedades de Superficie
13.
Chemosphere ; 315: 137679, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586443

RESUMEN

The heat desorption of styrene from adsorbents is impracticable owing to its spontaneous polymerization under heating conditions. However, the feature also brings a potential promoting effect on styrene adsorption. Therefore, it is expected to develop the non-regenerative adsorbents with large adsorption capacity by strengthening the polymerization effect. In this work, C-Cl grafted silica gel adsorbents were prepared by introducing (Chloromethyl)dimethylchlorosilane (CMDMCS) and FeCl2 into silica gel. The C-Cl grafted silica gel exhibited excellent styrene adsorption performance, its adsorption amounts for styrene were 4.67 times and 9 times of unmodified silica gel under dry air condition and high humidity condition (RH = 80%), respectively. In addition, the adsorption of styrene on C-Cl grafted silica gel was almost unaffected by the presence of toluene. The characterization of adsorbents after styrene adsorption indicated that the improvement of adsorption capacity of C-Cl grafted silica gel for styrene can be attributed to atom transfer radical polymerization (ATRP) of styrene molecules on modified silica gel during adsorption process.


Asunto(s)
Estireno , Tolueno , Gel de Sílice , Adsorción , Dióxido de Silicio
14.
J Hazard Mater ; 448: 130900, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731324

RESUMEN

Although free hydroxyl radical (·OH) generated on OMS-2-based catalysts during the catalytic ozonation process have been shown as important reactive oxygen species (ROSs) for toluene degradation, improvement of surface ·OH formation ability remains challenging. Here, Na, K, Rb, and Cs-OMS-2-SO42-/ZSM-5 catalysts were prepared, characterized and evaluated for catalytic ozonation of toluene. Both characterizations and DFT calculations showed that the appropriate alkali metal introduction made the catalyst possess with appropriate crystalline, reducibility, and acidity, which was favorable for catalytic ozonation of toluene. Characterizations also showed that alkali metal introduction resulted in water molecule adsorption on Brönsted acid sites of the catalysts, which made water molecule activation by ozone to form ·OH more easily. The introduction of K+ content of ∼ 5.9 wt% yielded K-OMS-2-SO42-/ZSM-5 catalyst with the highest Brönsted acid sites and thus formed the most ·OH among the five prepared catalysts. As a result, the catalyst exhibited excellent toluene conversion and COx selectivity for catalytic ozonation of toluene at room temperature and ambient humidity. Furthermore, the catalytic activity of deactivated K-OMS-2-SO42-/ZSM-5 catalyst was recovered after regeneration by a combination of water washing and heat treatment. Finally, a complete mechanism for toluene catalytic ozonation, catalyst deactivation, and regeneration was proposed.

15.
Environ Sci Technol ; 46(4): 2360-7, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22264123

RESUMEN

Here, nonelectrosprayed nanoscale zerovalent iron (NE-nZVI), electrosprayed nZVI (E-nZVI) and preoxidized nZVI (O-nZVI) particles were applied to inactivating Bacillus subtilis, Escherichia coli as well as bacteria in various wastewater samples. In addition, magnetic separation was applied to the mixture of 0.2 mL bacterial sample and 1.8 mL E-nZVI or NE-nZVI suspensions. Bacterial concentrations and optical density of the supernatants were analyzed using culturing, optical adsorption and qPCR tests. In general, for wastewater samples the inactivations were shown to range from 1-log to 3-log. PCR-DGGE analysis indicated that no gene mutation occurred when bacteria were treated with nZVI. Using magnetic separation, significant physical removals, revealed as a function of nZVI type (NE-,E- and O-nZVI) and bacterial concentration, up to 6-log were obtained. E-nZVI and NE-nZVI were shown to react differently with B. subtilis and E. coli, although exhibiting similar inactivation rates. qPCR tests detected higher amount of DNA in the supernatants from mixing E. coli with NE-nZVI, but less for E-nZVI. However, the opposite was observed with B. subtilis. Our data together with optical adsorption analysis suggested that the inactivation and magnetic separation mainly depend on Fe(0)/Fe(3)O(4) shell compositions, the type of bacteria (aerobic and anaerobic) and their concentrations.


Asunto(s)
Bacillus subtilis , Escherichia coli , Hierro , Magnetismo , Nanopartículas del Metal , Contaminantes del Agua , Bacillus subtilis/efectos de los fármacos , Desinfección/métodos , Escherichia coli/efectos de los fármacos , Agua Dulce/microbiología , Hierro/toxicidad , Nanopartículas del Metal/toxicidad , Aguas del Alcantarillado/microbiología , Suspensiones , Eliminación de Residuos Líquidos/métodos
16.
Environ Sci Technol ; 46(6): 3360-8, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22385302

RESUMEN

Here, nonthermal plasma generated by a dielectric barrier discharge (DBD) system was applied to inactivating aerosolized Bacillus subtilis cells and Pseudomonas fluorescens as well as indoor and outdoor bioaerosols. The culturability, viability, and diversity losses of the microorganisms in air samples treated by the plasma for 0.06-0.12 s were studied using culturing, DNA stain as well as polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods. In addition, the viable fraction of bacterial aerosols with and without the plasma treatment was also quantified using qPCR coupled with ethidium monoazide (EMA). It was shown that less than 2% of B. subtilis aerosols survived the plasma treatment of 0.12 s, while none of the P. fluorescens aerosols survived. Viability tests, EMA-qPCR results, and Scanning Electron Microscopy (SEM) images demonstrated that both bacterial species suffered significant viability loss, membrane, and DNA damages. Exposure of environmental bacterial and fungal aerosols to the plasma for 0.06 s also resulted in their significant inactivations, more than 95% for bacteria and 85-98% for fungal species. PCR-DGGE analysis showed that plasma exposure of 0.06 s resulted in culturable bacterial aerosol diversity loss for both environments, especially pronounced for indoor environment. The results here demonstrate that nonthermal plasma exposure could offer a highly efficient air decontamination technology.


Asunto(s)
Contaminantes Atmosféricos , Bacillus subtilis , Desinfección/métodos , Pseudomonas fluorescens , Aerosoles , Contaminantes Atmosféricos/aislamiento & purificación , Presión Atmosférica , Bacillus subtilis/genética , Bacillus subtilis/aislamiento & purificación , Bacillus subtilis/ultraestructura , Carga Bacteriana , ADN Bacteriano/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Microscopía Electrónica de Rastreo , Reacción en Cadena de la Polimerasa , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/aislamiento & purificación
17.
J Hazard Mater ; 434: 128925, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460997

RESUMEN

Characterizing marine biotoxins (MBs) composition in coastal aerosol particles has become essential to tracking sources of atmospheric contaminants and assessing human inhalable exposure risks to air particles. Here, coastal aerosol particles were collected over an almost 3-year period for the analysis of eight representative MBs, including brevetoxin (BTX), okadaic acid (OA), pectenotoxin-2 (PTX-2), domoic acid (DA), tetrodotoxin (TTX), saxitoxin (STX), ciguatoxin (CTX) and ω-Conotoxin. Our data showed that the levels of inhalable airborne marine biotoxins (AMBs) varied greatly among the subcategories and over time. Both in daytime and nighttime, a predominance of coarse-mode AMB particles was found for all the target AMBs. Based on the experimental data, we speculate that an ambient AMB might have multiple sources/production pathways, which include air-sea aerosol production and direct generation and release from toxigenic microalgae/bacteria suspended in surface seawater or air, and different sources may make different contribution. Regardless of the subcategory, the highest deposition efficiency of an individual AMB was found in the head airway region, followed by the alveolar and tracheobronchial regions. This study provides new information about inhalable MBs in the coastal atmosphere. The coexistence of various particle-bound MBs raises concerns about potential health risks from exposure to coastal air particles.


Asunto(s)
Contaminantes Atmosféricos , Toxinas Marinas , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Atmósfera/análisis , Monitoreo del Ambiente , Humanos , Toxinas Marinas/análisis , Ácido Ocadaico/análisis , Agua de Mar
18.
J Hazard Mater ; 436: 129208, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739730

RESUMEN

Adsorptive removal of gas phase low concentration macromolecular organic component, represented by naphthalene, from the enclosed space using ordered mesoporous carbon (OMC) has been studied by molecular simulation and experimental investigation. The simulation results indicated that both adsorption capacity and adsorption stability of the OMCs for naphthalene decreased with the increase of pore sizes from 2 nm to 8 nm. Characterizations showed that the prepared OMCs had the pore structure similar to the simulated OMCs except for the rough surface. In particular, the adsorption performance of the prepared OMCs was significantly lower than that of the simulated OMCs when pore size was 2 nm and 3 nm, which was attributed to the rough inner surface of these adsorbents, blocking the narrow pore channels and significantly reducing the pore volume. OMC with pore size of 4 nm had the highest adsorption amount for naphthalene. The co-adsorption experiments in the presence of both naphthalene and toluene, acetone or water showed the adsorption performance of OMCs for naphthalene were almost unaffected by the presence of low concentration toluene and acetone, as well as high relative humidity.

19.
Environ Sci Technol ; 45(17): 7473-80, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21780777

RESUMEN

Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.


Asunto(s)
Aerosoles/análisis , Técnicas Biosensibles , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Microfluídica/instrumentación , Microfluídica/métodos , Nanocables/química , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/química , Silicio/química
20.
Sci Total Environ ; 752: 141641, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32892037

RESUMEN

Archaea have an important role in the elemental biogeochemical cycle and human health. However, characteristics of airborne archaea affected by anthropogenic and natural processes are unclear. In this study, we investigated the abundance, structures, influencing factors and assembly processes of the archaeal communities in the air samples collected from Beijing in springtime using quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology and statistical analysis. The concentrations of airborne archaea ranged from 101 to 103 copies m-3 (455 ± 211 copies m-3), accounting for 0.67% of the total prokaryote (sum of archaea and bacteria). An increase in airborne archaea was seen when the air quality shifted from clean to slightly polluted conditions. Sandstorm dust imported a large number of archaea to the local atmosphere. Euryarchaeota, Thaumarchaeota and Crenarchaeota were the dominant phyla, revealing the primary role of soil in releasing archaea to the ambient environment. Dispersal-related neutral processes play an important role in shaping the structure of airborne archaeal assembly. Of all phyla, methanogenic Euryarchaeota were most abundant in the air parcels come from the south of Beijing. Air masses from the west of Beijing, which brought sandstorm to Beijing, carried large amounts of ammonia oxidizing archaea Nitrososphaera. The results demonstrate the importance of air mass sources and local weather conditions in shaping the local airborne archaea community.


Asunto(s)
Contaminación del Aire , Polvo , Archaea/genética , Beijing , China , Polvo/análisis , Humanos , Filogenia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda