Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Biol Chem ; 300(2): 105590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141759

RESUMEN

Far-red light photoacclimation, or FaRLiP, is a facultative response exhibited by some cyanobacteria that allows them to absorb and utilize lower energy light (700-800 nm) than the wavelengths typically used for oxygenic photosynthesis (400-700 nm). During this process, three essential components of the photosynthetic apparatus are altered: photosystem I, photosystem II, and the phycobilisome. In all three cases, at least some of the chromophores found in these pigment-protein complexes are replaced by chromophores that have red-shifted absorbance relative to the analogous complexes produced in visible light. Recent structural and spectroscopic studies have elucidated important features of the two photosystems when altered to absorb and utilize far-red light, but much less is understood about the modified phycobiliproteins made during FaRLiP. We used single-particle, cryo-EM to determine the molecular structure of a phycobiliprotein core complex comprising allophycocyanin variants that absorb far-red light during FaRLiP in the marine cyanobacterium Synechococcus sp. PCC 7335. The structure reveals the arrangement of the numerous red-shifted allophycocyanin variants and the probable locations of the chromophores that serve as the terminal emitters in this complex. It also suggests how energy is transferred to the photosystem II complexes produced during FaRLiP. The structure additionally allows comparisons with other previously studied allophycocyanins to gain insights into how phycocyanobilin chromophores can be tuned to absorb far-red light. These studies provide new insights into how far-red light is harvested and utilized during FaRLiP, a widespread cyanobacterial photoacclimation mechanism.


Asunto(s)
Aclimatación , Proteínas Bacterianas , Modelos Moleculares , Ficobiliproteínas , Luz Roja , Synechococcus , Complejo de Proteína del Fotosistema II/metabolismo , Synechococcus/química , Synechococcus/metabolismo , Ficobiliproteínas/química , Aclimatación/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Estructura Terciaria de Proteína
2.
J Biol Chem ; 299(1): 102815, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549647

RESUMEN

Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.


Asunto(s)
Aclimatación , Cianobacterias , Complejo de Proteína del Fotosistema II , Multimerización de Proteína , Clorofila/metabolismo , Clorofila A/metabolismo , Cianobacterias/metabolismo , Cianobacterias/fisiología , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/química
3.
J Biol Chem ; 298(1): 101408, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34793839

RESUMEN

Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700-800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL-PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.


Asunto(s)
Ferredoxinas , Complejo de Proteína del Fotosistema I , Synechococcus , Clorofila/metabolismo , Ferredoxinas/metabolismo , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/metabolismo
4.
J Biol Chem ; 298(1): 101424, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801554

RESUMEN

Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Synechococcus , Clorofila/metabolismo , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Synechococcus/metabolismo , Agua/metabolismo
5.
Photosynth Res ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773575

RESUMEN

Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.

6.
Proc Natl Acad Sci U S A ; 117(30): 17599-17606, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32647063

RESUMEN

Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40 diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39 and C38 carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic-Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.


Asunto(s)
Cianobacterias/fisiología , Fotosíntesis , Azufre/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Fotosíntesis/genética , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
7.
Photosynth Res ; 153(1-2): 21-42, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35441927

RESUMEN

Depending upon their growth responses to high and low irradiance, respectively, thermophilic Synechococcus sp. isolates from microbial mats associated with the effluent channels of Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, can be described as either high-light (HL) or low-light (LL) ecotypes. Strains isolated from the bottom of the photic zone grow more rapidly at low irradiance compared to strains isolated from the uppermost layer of the mat, which conversely grow better at high irradiance. The LL-ecotypes develop far-red absorbance and fluorescence emission features after growth in LL. These isolates have a unique gene cluster that encodes a putative cyanobacteriochrome denoted LcyA, a putative sensor histidine kinase; an allophycocyanin (FRL-AP; ApcD4-ApcB3) that absorbs far-red light; and a putative chlorophyll a-binding protein, denoted IsiX, which is homologous to IsiA. The emergence of FRL absorbance in LL-adapted cells of Synechococcus sp. strain A1463 was analyzed in cultures responding to differences in light intensity. The far-red absorbance phenotype arises from expression of a novel antenna complex containing the FRL-AP, ApcD4-ApcB3, which is produced when cells were grown at very low irradiance. Additionally, the two GAF domains of LcyA were shown to bind phycocyanobilin and a [4Fe-4S] cluster, respectively. These ligands potentially enable this photoreceptor to respond to a variety of environmental factors including irradiance, redox potential, and/or oxygen concentration. The products of the gene clusters specific to LL-ecotypes likely facilitate growth in low-light environments through a process called Low-Light Photoacclimation.


Asunto(s)
Synechococcus , Aclimatación , Clorofila A/metabolismo , Histidina Quinasa/metabolismo , Ligandos , Luz , Oxígeno/metabolismo , Synechococcus/fisiología
8.
Photosynth Res ; 143(1): 81-95, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31760552

RESUMEN

Some terrestrial cyanobacteria acclimate to and utilize far-red light (FRL; λ = 700-800 nm) for oxygenic photosynthesis, a process known as far-red light photoacclimation (FaRLiP). A conserved, 20-gene FaRLiP cluster encodes core subunits of Photosystem I (PSI) and Photosystem II (PSII), five phycobiliprotein subunits of FRL-bicylindrical cores, and enzymes for synthesis of chlorophyll (Chl) f and possibly Chl d. Deletion mutants for each of the five apc genes of the FaRLiP cluster were constructed in Synechococcus sp. PCC 7335, and all had similar phenotypes. When the mutants were grown in white (WL) or red (RL) light, the cells closely resembled the wild-type (WT) strain grown under the same conditions. However, the WT and mutant strains were very different when grown under FRL. Mutants grown in FRL were unable to assemble FRL-bicylindrical cores, were essentially devoid of FRL-specific phycobiliproteins, but retained RL-type phycobilisomes and WL-PSII. The transcript levels for genes of the FaRLiP cluster in the mutants were similar to those in WT. Surprisingly, the Chl d contents of the mutant strains were greatly reduced (~ 60-99%) compared to WT and so were the levels of FRL-PSII. We infer that Chl d may be essential for the assembly of FRL-PSII, which does not accumulate to normal levels in the mutants. We further infer that the cysteine-rich subunits of FRL allophycocyanin may either directly participate in the synthesis of Chl d or that FRL bicylindrical cores stabilize FRL-PSII to prevent loss of Chl d.


Asunto(s)
Clorofila/metabolismo , Luz , Ficocianina/metabolismo , Clorofila/análogos & derivados , Clorofila/química , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Modelos Moleculares , Familia de Multigenes , Mutación/genética , Ficobilisomas/metabolismo , Proteómica , Espectrometría de Fluorescencia , Synechococcus/genética , Synechococcus/crecimiento & desarrollo , Synechococcus/metabolismo , Synechococcus/efectos de la radiación
9.
Photosynth Res ; 141(2): 151-163, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30710189

RESUMEN

Certain cyanobacteria can thrive in environments enriched in far-red light (700-800 nm) due to an acclimation process known as far-red light photoacclimation (FaRLiP). During FaRLiP, about 8% of the Chl a molecules in the photosystems are replaced by Chl f and a very small amount of Chl d. We investigated the spectroscopic properties of Photosystem I (PSI) complexes isolated from wild-type (WT) Synechococcus sp. PCC 7335 and a chlF mutant strain (lacking Chl f synthase) grown in white and far-red light (WL-PSI and FRL-PSI, respectively). WT-FRL-PSI complexes contain Chl f and Chl a but not Chl d. The light-minus dark difference spectrum of the trapping center at high spectral resolution indicates that the special pair in WT-FRL-PSI consists of Chl a molecules with maximum bleaching at 703-704 nm. The action spectrum for photobleaching of the special pair showed that Chl f molecules absorbing at wavelengths up to 800 nm efficiently transfer energy to the trapping center in FRL-PSI complexes to produce a charge-separated state. This is ~ 50 nm further into the near IR than WL-PSI; Chl f has a quantum yield equivalent to that of Chl a in the antenna, i.e., ~ 1.0. PSI complexes from Synechococcus 7002 carrying 3.8 Chl f molecules could promote photobleaching of the special pair by energy transfer at wavelengths longer than WT PSI complexes. Results from these latter studies are directly relevant to the issue of whether introduction of Chl f synthase into plants could expand the wavelength range available for oxygenic photosynthesis in crop plants.


Asunto(s)
Transferencia de Energía , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/fisiología , Aclimatación , Clorofila/análogos & derivados , Clorofila/metabolismo , Luz , Complejo de Proteína del Fotosistema I/efectos de la radiación , Synechococcus/efectos de la radiación
10.
Photosynth Res ; 140(1): 77-92, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30607859

RESUMEN

In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3-4:1, bound ß-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes.


Asunto(s)
Ligasas de Carbono-Oxígeno/metabolismo , Clorofila/análogos & derivados , Cianobacterias/enzimología , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/enzimología , Ligasas de Carbono-Oxígeno/genética , Ligasas de Carbono-Oxígeno/aislamiento & purificación , Clorofila/metabolismo , Clorofila A/metabolismo , Cianobacterias/genética , Cianobacterias/fisiología , Cianobacterias/efectos de la radiación , Expresión Génica , Variación Genética , Luz , Mutagénesis Sitio-Dirigida , Feofitinas/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Ficobilisomas , Synechococcus/genética , Synechococcus/fisiología , Synechococcus/efectos de la radiación
11.
Photosynth Res ; 136(1): 31-48, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28916964

RESUMEN

A site-directed C14G mutation was introduced into the stromal PsaC subunit of Synechococcus sp. strain PCC 7002 in vivo in order to introduce an exchangeable coordination site into the terminal FB [4Fe-4S] cluster of Photosystem I (PSI). Using an engineered PSI-less strain (psaAB deletion), psaC was deleted and replaced with recombinant versions controlled by a strong promoter, and the psaAB deletion was complemented. Modified PSI accumulated at lower levels in this strain and supported slower photoautotrophic growth than wild type. As-isolated PSI complexes containing PsaCC14G showed resonances with g values of 2.038 and 2.007 characteristic of a [3Fe-4S]1+ cluster. When the PSI complexes were illuminated at 15 K, these resonances partially disappeared and two new sets of resonances appeared. The majority set had g values of 2.05, 1.95, and 1.85, characteristic of FA-, and the minority set had g values of 2.11, 1.90, and 1.88 from FB' in the modified site. The S = 1/2 spin state of the latter implied the presence of a thiolate as the terminal ligand. The [3Fe-4S] clusters could be partially reconstituted with iron, producing a larger population of [4Fe-4S] clusters. Rates of flavodoxin reduction were identical in PSI complexes isolated from wild type and the PsaCC14G variant strain; this implied equivalent capacity for forward electron transfer in PSI complexes that contained [3Fe-4S] and [4Fe-4S] clusters. The development of this cyanobacterial strain is a first step toward translation of in vitro PSI-based biosolar molecular wire systems in vivo and provides new insights into the formation of Fe/S clusters.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Mutación/genética , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/metabolismo , Procesos Autotróficos , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Flavodoxina/metabolismo , Genes Bacterianos , Prueba de Complementación Genética , Cinética , Luz , Complejo de Proteína del Fotosistema I/genética , Procesos Fototróficos , Pigmentos Biológicos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectrometría de Fluorescencia , Synechococcus/crecimiento & desarrollo , Temperatura , Transcripción Genética
12.
Photosynth Res ; 131(3): 267-280, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27743323

RESUMEN

The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces ß-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or ß-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and ß-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, ß-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.


Asunto(s)
Clorofila/metabolismo , Liasas Intramoleculares/genética , Synechocystis/genética , Secuencia de Aminoácidos , Carotenoides/metabolismo , Clorofila A , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Genes Bacterianos , Liasas Intramoleculares/química , Licopeno , Unión Proteica , Homología de Secuencia de Aminoácido , Synechocystis/enzimología
13.
Photosynth Res ; 131(2): 187-202, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27623780

RESUMEN

Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.


Asunto(s)
Adaptación Fisiológica , Luz , Ficobiliproteínas/metabolismo , Synechococcus/fisiología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , Microscopía Electrónica de Transmisión , Espectrometría de Fluorescencia , Synechococcus/metabolismo
14.
Photosynth Res ; 131(2): 173-186, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27638320

RESUMEN

Far-red light photoacclimation (FaRLiP) is a mechanism that allows some cyanobacteria to utilize far-red light (FRL) for oxygenic photosynthesis. During FaRLiP, cyanobacteria remodel photosystem (PS) I, PS II, and phycobilisomes while synthesizing Chl d, Chl f, and far-red-absorbing phycobiliproteins, and these changes enable these organisms to use FRL for growth. In this study, a conjugation-based genetic system was developed for Synechococcus sp. PCC 7335. Three antibiotic cassettes were successfully used to generate knockout mutations in genes in Synechococcus sp. PCC 7335, which should allow up to three gene loci to be modified in one strain. This system was used to delete the rfpA, rfpB, and rfpC genes individually, and characterization of the mutants demonstrated that these genes control the expression of the FaRLiP gene cluster in Synechococcus sp. PCC 7335. The mutant strains exhibited some surprising differences from similar mutants in other FaRLiP strains. Notably, mutations in any of the three master transcription regulatory genes led to enhanced synthesis of phycocyanin and PS II. A time-course study showed that acclimation of the photosynthetic apparatus from that produced in white light to that produced in FRL occurs very slowly over a period 12-14 days in this strain and that it is associated with a substantial reduction (~34 %) in the chlorophyll a content of the cells. This study shows that there are differences in the detailed responses of cyanobacteria to growth in FRL in spite of the obvious similarities in the organization and regulation of the FaRLiP gene cluster.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Luz , Synechococcus/fisiología , Genes Bacterianos , Mutación , Espectrometría de Fluorescencia , Synechococcus/genética , Transcripción Genética
15.
Photosynth Res ; 128(3): 325-40, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27071628

RESUMEN

In the evolution of different cyanobacteria performing oxygenic photosynthesis, the core complexes of the two photosystems were highly conserved. However, cyanobacteria exhibit significant diversification in their light-harvesting complexes and have flexible regulatory mechanisms to acclimate to changes in their growth environments. In the siderophilic, filamentous cyanobacterium, Leptolyngbya sp. strain JSC-1, five different isiA-family genes occur in two gene clusters. During acclimation to Fe limitation, relative transcript levels for more than 600 genes increased more than twofold. Relative transcript levels were ~250 to 300 times higher for the isiA1 gene cluster (isiA1-isiB-isiC), and ~440- to 540-fold for the isiA2-isiA3-isiA4-cpcG2-isiA5 gene cluster after 48 h of iron starvation. Chl-protein complexes were isolated and further purified from cells grown under Fe-replete and Fe-depleted conditions. A single class of particles, trimeric PSI, was identified by image analysis of electron micrographs of negatively stained PSI complexes from Fe-replete cells. However, three major classes of particles were observed for the Chl-protein supercomplexes from cells grown under iron starvation conditions. Based on LC-MS-MS analyses, the five IsiA-family proteins were found in the largest supercomplexes together with core components of the two photosystems; however, IsiA5 was not present in complexes in which only the core subunits of PSI were detected. IsiA5 belongs to the same clade as PcbC proteins in a phylogenetic classification, and it is proposed that IsiA5 is most likely involved in supercomplexes containing PSII dimers. IsiA4, which is a fusion of an IsiA domain and a C-terminal PsaL domain, was found together with IsiA1, IsiA2, and IsiA3 in complexes with monomeric PSI. The data indicate that horizontal gene transfer, gene duplication, and divergence have played important roles in the adaptive evolution of this cyanobacterium to iron starvation conditions.


Asunto(s)
Aclimatación , Proteínas Bacterianas/genética , Cianobacterias/fisiología , Deficiencias de Hierro , Complejos de Proteína Captadores de Luz/genética , Animales , Anticuerpos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Cianobacterias/ultraestructura , Evolución Molecular , Duplicación de Gen , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Homeostasis , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Filogenia , Conejos , Análisis de Secuencia de ARN
16.
J Biol Chem ; 289(23): 15904-14, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24764304

RESUMEN

The biogenesis of thylakoid membranes in cyanobacteria is presently not well understood, but the vipp1 gene product has been suggested to play an important role in this process. Previous studies in Synechocystis sp. PCC 6803 reported that vipp1 (sll0617) was essential. By constructing a fully segregated null mutant in vipp1 (SynPCC7002_A0294) in Synechococcus sp. PCC 7002, we show that Vipp1 is not essential. Spectroscopic studies revealed that Photosystem I (PS I) was below detection limits in the vipp1 mutant, but Photosystem II (PS II) was still assembled and was active. Thylakoid membranes were still observed in vipp1 mutant cells and resembled those in a psaAB mutant that completely lacks PS I. When the vipp1 mutation was complemented with the orthologous vipp1 gene from Synechocystis sp. PCC 6803 that was expressed from the strong P(cpcBA) promoter, PS I content and activities were restored to normal levels, and cells again produced thylakoids that were indistinguishable from those of wild type. Transcription profiling showed that psaAB transcripts were lower in abundance in the vipp1 mutant. However, when the yfp gene was expressed from the P(psaAB) promoter in the presence and the absence of Vipp1, no difference in YFP expression was observed, which shows that Vipp1 is not a transcription factor for the psaAB genes. This study shows that thylakoids are still produced in the absence of Vipp1 and that normal thylakoid biogenesis in Synechococcus sp. PCC 7002 requires expression and biogenesis of PS I, which in turn requires Vipp1.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de la Membrana/fisiología , Synechococcus/fisiología , Tilacoides/fisiología , Proteínas Bacterianas/genética , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Eliminación de Gen , Genes Bacterianos , Prueba de Complementación Genética , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Mutación , ARN Mensajero/genética , Espectrometría de Fluorescencia , Synechococcus/genética , Tilacoides/ultraestructura
17.
Curr Biol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38851184

RESUMEN

The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.

18.
Biochim Biophys Acta Bioenerg ; 1865(3): 149044, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588942

RESUMEN

Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Synechococcus , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Synechococcus/metabolismo , Clorofila/metabolismo , Clorofila/química , Luz , Transporte de Electrón , Spinacia oleracea/metabolismo
19.
Biochim Biophys Acta Bioenerg ; 1864(4): 149002, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562512

RESUMEN

In cyanobacteria that undergo far red light photoacclimation (FaRLiP), chlorophyll (Chl) f is produced by the ChlF synthase enzyme, probably by photo-oxidation of Chl a. The enzyme forms homodimeric complexes and the primary amino acid sequence of ChlF shows a high degree of homology with the D1 subunit of photosystem II (PSII). However, few details of the photochemistry of ChlF are known. The results of a mutational analysis and optically detected magnetic resonance (ODMR) data from ChlF are presented. Both sets of data show that there are significant differences in the photochemistry of ChlF and PSII. Mutation of residues that would disrupt the donor side primary electron transfer pathway in PSII do not inhibit the production of Chl f, while alteration of the putative ChlZ, P680 and QA binding sites rendered ChlF non-functional. Together with previously published transient EPR and flash photolysis data, the ODMR data show that in untreated ChlF samples, the triplet state of P680 formed by intersystem crossing is the primary species generated by light excitation. This is in contrast to PSII, in which 3P680 is only formed by charge recombination when the quinone acceptors are removed or chemically reduced. The triplet states of a carotenoid (3Car) and a small amount of 3Chl f are also observed by ODMR. The polarization pattern of 3Car is consistent with its formation by triplet energy transfer from ChlZ if the carotenoid molecule is rotated by 15° about its long axis compared to the orientation in PSII. It is proposed that the singlet oxygen formed by the interaction between molecular oxygen and 3P680 might be involved in the oxidation of Chl a to Chl f.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Clorofila A , Carotenoides/química , Óxido Nítrico Sintasa , Espectroscopía de Resonancia Magnética
20.
Sci Adv ; 9(12): eadg0251, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961897

RESUMEN

To compete in certain low-light environments, some cyanobacteria express a paralog of the light-harvesting phycobiliprotein, allophycocyanin (AP), that strongly absorbs far-red light (FRL). Using cryo-electron microscopy and time-resolved absorption spectroscopy, we reveal the structure-function relationship of this FRL-absorbing AP complex (FRL-AP) that is expressed during acclimation to low light and that likely associates with chlorophyll a-containing photosystem I. FRL-AP assembles as helical nanotubes rather than typical toroids due to alterations of the domain geometry within each subunit. Spectroscopic characterization suggests that FRL-AP nanotubes are somewhat inefficient antenna; however, the enhanced ability to harvest FRL when visible light is severely attenuated represents a beneficial trade-off. The results expand the known diversity of light-harvesting proteins in nature and exemplify how biological plasticity is achieved by balancing resource accessibility with efficiency.


Asunto(s)
Clorofila , Cianobacterias , Clorofila/metabolismo , Microscopía por Crioelectrón , Clorofila A/metabolismo , Cianobacterias/metabolismo , Luz , Fotosíntesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda