Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
1.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37080201

RESUMEN

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Asunto(s)
Electrónica , Análisis de Secuencia de ARN , Humanos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Electrónica/métodos
2.
Nat Immunol ; 22(2): 240-253, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432228

RESUMEN

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.


Asunto(s)
Linfocitos B/metabolismo , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Dosificación de Gen , Centro Germinal/metabolismo , Inmunidad Humoral , Linfoma de Células B/genética , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/deficiencia , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Centro Germinal/inmunología , Centro Germinal/patología , Haploinsuficiencia , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Linfoma de Células B/inmunología , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Cohesinas
3.
Nat Immunol ; 20(1): 86-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538335

RESUMEN

Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.


Asunto(s)
Linfocitos B/fisiología , Centro Germinal/patología , Histona Demetilasas/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Animales , Sistemas CRISPR-Cas , Carcinogénesis , ADN Intergénico/genética , Centro Germinal/inmunología , Histona Demetilasas/genética , Hiperplasia , Sinapsis Inmunológicas/genética , Intrones/genética , Linfoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-6/genética
4.
Nature ; 615(7954): 907-912, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949194

RESUMEN

Immunoglobulin M (IgM) is the first antibody to emerge during embryonic development and the humoral immune response1. IgM can exist in several distinct forms, including monomeric, membrane-bound IgM within the B cell receptor (BCR) complex, pentameric and hexameric IgM in serum and secretory IgM on the mucosal surface. FcµR, the only IgM-specific receptor in mammals, recognizes different forms of IgM to regulate diverse immune responses2-5. However, the underlying molecular mechanisms remain unknown. Here we delineate the structural basis of the FcµR-IgM interaction by crystallography and cryo-electron microscopy. We show that two FcµR molecules interact with a Fcµ-Cµ4 dimer, suggesting that FcµR can bind to membrane-bound IgM with a 2:1 stoichiometry. Further analyses reveal that FcµR-binding sites are accessible in the context of IgM BCR. By contrast, pentameric IgM can recruit four FcµR molecules to bind on the same side and thereby facilitate the formation of an FcµR oligomer. One of these FcµR molecules occupies the binding site of the secretory component. Nevertheless, four FcµR molecules bind to the other side of secretory component-containing secretory IgM, consistent with the function of FcµR in the retrotransport of secretory IgM. These results reveal intricate mechanisms of IgM perception by FcµR.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Inmunoglobulina M , Proteínas de la Membrana , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Inmunoglobulina M/química , Inmunoglobulina M/metabolismo , Inmunoglobulina M/ultraestructura , Mamíferos , Unión Proteica , Multimerización de Proteína , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/ultraestructura , Componente Secretorio/química , Componente Secretorio/metabolismo , Componente Secretorio/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/ultraestructura
5.
Nature ; 622(7983): 552-561, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758947

RESUMEN

Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.


Asunto(s)
Sistema Nervioso Central , Imagenología Tridimensional , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Análisis de la Célula Individual/métodos , Médula Espinal/anatomía & histología , Médula Espinal/citología , Médula Espinal/metabolismo , Transcriptoma/genética , Análisis de Expresión Génica de una Sola Célula , Tropismo Viral , Conjuntos de Datos como Asunto , Transgenes/genética , Imagenología Tridimensional/métodos
6.
Proc Natl Acad Sci U S A ; 121(25): e2323009121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875144

RESUMEN

Error correction is central to many biological systems and is critical for protein function and cell health. During mitosis, error correction is required for the faithful inheritance of genetic material. When functioning properly, the mitotic spindle segregates an equal number of chromosomes to daughter cells with high fidelity. Over the course of spindle assembly, many initially erroneous attachments between kinetochores and microtubules are fixed through the process of error correction. Despite the importance of chromosome segregation errors in cancer and other diseases, there is a lack of methods to characterize the dynamics of error correction and how it can go wrong. Here, we present an experimental method and analysis framework to quantify chromosome segregation error correction in human tissue culture cells with live cell confocal imaging, timed premature anaphase, and automated counting of kinetochores after cell division. We find that errors decrease exponentially over time during spindle assembly. A coarse-grained model, in which errors are corrected in a chromosome-autonomous manner at a constant rate, can quantitatively explain both the measured error correction dynamics and the distribution of anaphase onset times. We further validated our model using perturbations that destabilized microtubules and changed the initial configuration of chromosomal attachments. Taken together, this work provides a quantitative framework for understanding the dynamics of mitotic error correction.


Asunto(s)
Segregación Cromosómica , Cinetocoros , Microtúbulos , Mitosis , Huso Acromático , Humanos , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Anafase , Modelos Biológicos , Células HeLa
7.
PLoS Pathog ; 20(3): e1012113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38547316

RESUMEN

Chronic viral infections cause T cell dysfunction in both animal models and human clinical settings, thereby affecting the ability of the host immune system to clear viral pathogens and develop proper virus-specific immune memory. However, the impact of chronic viral infections on the host's immune memory to other pathogens has not been well described. In this study, we immunized mice with recombinant Listeria monocytogenes expressing OVA (Lm-OVA) to generate immunity to Lm and allow analysis of OVA-specific memory T (Tm) cells. We then infected these mice with lymphocytic choriomeningitis virus (LCMV) strain Cl-13 which establishes a chronic infection. We found that chronically infected mice were unable to protect against Listeria re-challenge. OVA-specific Tm cells showed a progressive loss in total numbers and in their ability to produce effector cytokines in the context of chronic LCMV infection. Unlike virus-specific T cells, OVA-specific Tm cells from chronically infected mice did not up-regulate the expression of inhibitory receptors, a hallmark feature of exhaustion in virus-specific T cells. Finally, OVA-specific Tm cells failed to mount a robust recall response after bacteria re-challenge both in the chronically infected and adoptively transferred naïve hosts. These results show that previously established bacteria-specific Tm cells become functionally impaired in the setting of an unrelated bystander chronic viral infection, which may contribute to poor immunity against other pathogens in the host with chronic viral infection.


Asunto(s)
Coriomeningitis Linfocítica , Virosis , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Memoria Inmunológica , Virus de la Coriomeningitis Linfocítica , Citocinas , Ratones Endogámicos C57BL
8.
Proc Natl Acad Sci U S A ; 120(30): e2220296120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459535

RESUMEN

Metastasis, especially intrahepatic, is a major challenge for hepatocellular carcinoma (HCC) treatment. Cytoskeleton remodeling has been identified as a vital process mediating intrahepatic spreading. Previously, we reported that HCC tumor adhesion and invasion were modulated by circular RNA (circRNA), which has emerged as an important regulator of various cellular processes and has been implicated in cancer progression. Here, we uncovered a nuclear circRNA, circASH2, which is preferentially lost in HCC tissues and inhibits HCC metastasis by altering tumor cytoskeleton structure. Tropomyosin 4 (TPM4), a critical binding protein of actin, turned out to be the major target of circASH2 and was posttranscriptionally suppressed. Such regulation is based on messenger RNA (mRNA)/precursormRNA splicing and degradation process. Furthermore, liquid-liquid phase separation of nuclear Y-box binding protein 1 (YBX1) enhanced by circASH2 augments TPM4 transcripts decay. Together, our data have revealed a tumor-suppressive circRNA and, more importantly, uncovered a fine regulation mechanism for HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , ARN Circular/genética , ARN Circular/metabolismo , ARN Mensajero , Proliferación Celular/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Línea Celular Tumoral , Proteína 1 de Unión a la Caja Y/genética
10.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38342687

RESUMEN

The alteration of neural interactions across different cerebral perfusion states remains unclear. This study aimed to fulfill this gap by examining the longitudinal brain dynamic information interactions before and after cerebral reperfusion. Electroencephalogram in eyes-closed state at baseline and postoperative 7-d and 3-month follow-ups (moyamoya disease: 20, health controls: 23) were recorded. Dynamic network analyses were focused on the features and networks of electroencephalogram microstates across different microstates and perfusion states. Considering the microstate features, the parameters were disturbed of microstate B, C, and D but preserved of microstate A. The transition probabilities of microstates A-B and B-D were increased to play a complementary role across different perfusion states. Moreover, the microstate variability was decreased, but was significantly improved after cerebral reperfusion. Regarding microstate networks, the functional connectivity strengths were declined, mainly within frontal, parietal, and occipital lobes and between parietal and occipital lobes in different perfusion states, but were ameliorated after cerebral reperfusion. This study elucidates how dynamic interaction patterns of brain neurons change after cerebral reperfusion, which allows for the observation of brain network transitions across various perfusion states in a live clinical setting through direct intervention.


Asunto(s)
Encéfalo , Electroencefalografía , Encéfalo/fisiología , Mapeo Encefálico , Perfusión , Circulación Cerebrovascular
11.
J Hepatol ; 80(2): 309-321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37918568

RESUMEN

BACKGROUND & AIMS: Post-hepatectomy liver failure (PHLF) leads to poor prognosis in patients undergoing hepatectomy, with hepatic vascular reconstitution playing a critical role. However, the regulators of hepatic vascular reconstitution remain unclear. In this study, we aimed to investigate the regulatory mechanisms of hepatic vascular reconstitution and identify biomarkers predicting PHLF in patients undergoing hepatectomy. METHODS: Candidate genes that were associated with hepatic vascular reconstitution were screened using adeno-associated virus vectors in Alb-Cre-CRISPR/Cas9 mice subjected to partial hepatectomy. The biological activities of candidate genes were estimated using endothelial precursor transfusion and associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) models. The level of candidates was detected in biopsies from patients undergoing ALPPS. Risk factors for PHLF were also screened using retrospective data. RESULTS: Downregulation of Gata3 and upregulation of Ramp2 in hepatocytes promoted the proliferation of liver sinusoidal endothelial cells and hepatic revascularization. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor A (VEGFA) played opposite roles in regulating the migration of endothelial precursors from bone marrow and the formation of new sinusoids after hepatectomy. Gata3 restricted endothelial cell function in patient-derived hepatic organoids, which was abrogated by a Gata3 inhibitor. Moreover, overexpression of Gata3 led to higher mortality in ALPPS mice, which was improved by a PEDF-neutralizing antibody. The expression of Gata3/RAMP and PEDF/VEGFA tended to have a negative correlation in patients undergoing ALPPS. A nomogram incorporating multiple factors, such as serum PEDF/VEGF index, was constructed and could efficiently predict the risk of PHLF. CONCLUSIONS: The balance of Gata3 and Ramp2 in hepatocytes regulates the proliferation of liver sinusoidal endothelial cells and hepatic revascularization via changes in the expression of PEDF and VEGFA, revealing potential targets for the prevention and treatment of PHLF. IMPACT AND IMPLICATIONS: In this study, we show that the balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution by promoting a shift from pigment epithelium-derived factor (PEDF) to vascular endothelial growth factor A (VEGFA) expression during hepatectomy- or ALLPS (associating liver partition and portal vein ligation for staged hepatectomy)-induced liver regeneration. We also identified serum PEDF/VEGFA index as a potential predictor of post-hepatectomy liver failure in patients who underwent hepatectomy. This study improves our understanding of how hepatocytes contribute to liver regeneration and provides new targets for the prevention and treatment of post-hepatectomy liver failure.


Asunto(s)
Fallo Hepático , Neoplasias Hepáticas , Humanos , Ratones , Animales , Regeneración Hepática/fisiología , Factor A de Crecimiento Endotelial Vascular , Estudios Retrospectivos , Células Endoteliales , Hígado/cirugía , Hepatectomía/efectos adversos , Hepatocitos/fisiología , Vena Porta/cirugía , Fallo Hepático/etiología , Ligadura , Factor de Transcripción GATA3 , Proteína 2 Modificadora de la Actividad de Receptores
12.
Funct Integr Genomics ; 24(1): 10, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221563

RESUMEN

Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.


Asunto(s)
Proteínas con Dominio MARVEL , Proteínas de la Mielina , Simportadores , Neoplasias de la Tiroides , Humanos , Línea Celular Tumoral , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Simportadores/genética , Simportadores/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Proteínas con Dominio MARVEL/genética , Proteínas con Dominio MARVEL/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo
13.
J Neuroinflammation ; 21(1): 138, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802927

RESUMEN

Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.


Asunto(s)
Acuaporina 4 , Astrocitos , Eje Cerebro-Intestino , Hiperamonemia , Encefalopatía Asociada a la Sepsis , Animales , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Acuaporina 4/biosíntesis , Astrocitos/metabolismo , Hiperamonemia/metabolismo , Encefalopatía Asociada a la Sepsis/metabolismo , Masculino , Eje Cerebro-Intestino/fisiología , Ratones Endogámicos C57BL , Amoníaco/metabolismo , Amoníaco/sangre , Encéfalo/metabolismo , Trasplante de Microbiota Fecal
14.
Small ; 20(9): e2307179, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37857576

RESUMEN

Rechargeable battery devices with high energy density are highly demanded by the modern society. The use of lithium (Li) anodes is extremely attractive for future rechargeable battery devices. However, the notorious Li dendritic and instability of solid electrolyte interface (SEI) issues pose series of challenge for metal anodes. Here, based on the inspiration of in situ photoelectrochemical engineering, it is showed that a tailor-made composite photoanodes with good photoelectrochemical properties (Li affinity property and photocatalytic property) can significantly improve the electrochemical deposition behavior of Li anodes. The light-assisted Li anode is accommodated in the tailor-made current collector without uncontrollable Li dendrites. The as-prepared light-assisted Li metal anode can achieve the in situ stabilization of SEI layer under illumination. The corresponding in situ formation mechanism and photocatalytic mechanism of composite photoanodes are systematically investigated via DFT theoretical calculation, ex situ UV-vis and ex situ XPS characterization. It is worth mentioning that the as-prepared composite photoanodes can adapt to the ultra-high current density of 15 mA cm-2 and the cycle capacity of 15 mAh cm-2 under light, showing no dendritic morphology and low hysteresis voltage. This work is of great significance for the commercialization of new generation Li metal batteries.

15.
Ann Hematol ; 103(2): 565-574, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37951853

RESUMEN

The aim of the study was to explore the significance and prognostic value of 25-hydroxy vitamin D (25-(OH) D) deficiency in peripheral T-cell lymphomas (PTCLs). One hundred fifty-six patients of newly diagnosed PTCLs were enrolled in the study. Univariate and multivariate regression analyses were performed to determine independent risk factors for progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curves were plotted, and corresponding areas under the curve (AUC) were calculated to estimate the accuracy of International Prognostic Index (IPI) plus 25-(OH) D deficiency and Prognostic Index for T-cell lymphoma (PIT) plus 25-(OH) D deficiency respectively in PTCL risk stratification. Our results showed that the 25-(OH) D deficiency was an independent inferior prognostic factor for both PFS (P = 0.0019) and OS (P = 0.005) for PTCLs, especially for AITL and PTCL-not otherwise specified (PTCL-NOS). Additionally, adding 25-(OH) D deficiency to PIT indeed has a superior prognostic significance than PIT alone for PFS (P = 0.043) and OS (P = 0.036). Multivariate COX regression analysis revealed that PIT 2‒4, albumin (ALB) ≤ 35 g/L, and 25-(OH) D deficiency were regarded as independent risk factors of PFS and OS. Our results showed that 25-(OH) D deficiency was associated with inferior survival outcome of PTCLs, especially for AITL and PTCL-NOS. PIT plus 25-(OH) D deficiency could better indicate the prognosis for PFS and OS of PTCLs than PIT.


Asunto(s)
Linfoma de Células T Periférico , Deficiencia de Vitamina D , Humanos , Pronóstico , Vitamina D , Supervivencia sin Progresión , Estudios Retrospectivos
16.
Ann Hematol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886191

RESUMEN

Diffuse large B-cell lymphoma (DLBCL), accounts for 30-40% of newly diagnosed lymphomas, has an overall cure rate of approximately 60%. Despite previous reports suggesting a negative prognostic association between CCND3 mutations and Burkitt lymphoma, their prognostic implications in DLBCL remain controversial. To investigate this, we evaluated CCND3 mutation status in 2059 DLBCL patient samples from four database (integrated cohort) and additional 167 DLBCL patient samples in our center (JSPH cohort). The mutation was identified in 5.5% (113/2059) of the cases in the integrated cohort, with 86% (97/113) found in exon 5. Furthermore, P284, R271, I290 and Q276 are described as CCND3 mutation hotspots. CCND3 mutation was associated with decreased overall survival (OS) in the integrated cohort (P = 0.0407). Further subgroup analysis revealed that patients diagnosed as EZB subtype DLBCL by LymphGen algorithm with CCND3 mutations had poorer OS than patients diagnosed as EZB subtype without CCND3 mutations (P = 0.0140). Using the next-generation sequencing (NGS) in the JSPH cohort, it was found that both cell cycle and DNA replication pathways were highly upregulated in patients with CCND3 mutations. Our results suggest that CCND3 mutations can serve as a novel prognostic factor in DLBCL pathogenesis. Consequently, the development of personalized therapeutic strategies for DLBCL patients with CCND3 mutations might enhance their prognosis.

17.
Ann Hematol ; 103(5): 1675-1685, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228775

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is a severe non-Hodgkin's lymphoma. Life expectancy has improved with rituximab, but cause-specific mortality data is lacking. Using the Surveillance, Epidemiology, and End Results (SEER) database to study 27,449 individuals aged 20-74 years diagnosed with primary DLBCL who received chemotherapy between 2000 and 2019, we calculated standardized mortality rate (SMR) and excess absolute risk (EAR) and examined the connection between age, sex, time after diagnosis, and cause of death. Based on 12,205 deaths, 68.7% were due to lymphoma, 20.1% non-cancer causes, and 11.2% other cancers. Non-cancer mortality rates (SMR 1.2; EAR, 21.5) increased with DLBCL compared to the general population. The leading non-cancer death causes were cardiovascular (EAR, 22.6; SMR, 1.6) and infectious (EAR, 9.0; SMR, 2.9) diseases with DLBCL. Risks for non-cancer death and solid neoplasms are highest within the first diagnosis year, then decrease. Among socioeconomic factors, being white, being married, and having a higher income were favorable factors for reducing non-cancer mortality. To improve survival, close surveillance, assessment of risk factors, and early intervention are needed.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Humanos , Causas de Muerte , Programa de VERF , Linfoma de Células B Grandes Difuso/patología , Linfoma no Hodgkin/epidemiología , Rituximab/uso terapéutico
18.
Exp Cell Res ; 422(1): 113440, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481206

RESUMEN

The limited cardiomyocyte proliferation is insufficient for repair of the myocardium. Therefore, activating cardiomyocyte proliferation might be a reasonable option for myocardial regeneration. Here, we investigated effect of retinoic acid (RA) on inducing adult cardiomyocyte proliferation and assessed efficacy of self-assembling peptide (SAP)-released RA in activating regeneration of the infarcted myocardium. Effect of RA on inducing cardiomyocyte proliferation was examined with the isolated cardiomyocytes. Expression of the cell cycle-associated genes and paracrine factors in the infarcted myocardium was examined at one week after treatment with SAP-carried RA. Cardiomyocyte proliferation, myocardial regeneration and improvement of cardiac function were assessed at four weeks after treatment. In the adult rat myocardium, expression of RA synthetase gene Raldh2 and RA concentration were decreased significantly. After treatment with RA, the proliferated cardiomyocytes were increased. The formulated SAP could sustainedly release RA. After treatment with SAP-carried RA, expression of the pro-proliferative genes in cell cycle and paracrine factors in the infarcted myocardium were up-regulated. Myocardial regeneration was enhanced, and cardiac function was improved significantly. These results demonstrate that RA can induce adult cardiomyocytes to proliferate effectively. The sustained release of RA with SAP is a promise strategy to enhance repair of the infarcted myocardium.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Miocardio/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Proliferación Celular
19.
Environ Res ; 255: 119162, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762003

RESUMEN

In order to evaluate the impact of salinity gradients on the aniline biodegradation system, six reactors at salinity concentrations (0%-5%) were established. The results presented the salinity except for 5% imposed negligible effects on aniline degradation performance. Nitrification had prominent resistance to salinity (0%-1.5%) while were significantly restrained when salinity increased. The total nitrogen (TN) removal efficiency of Z4 (1.5%) was 20.5% higher than Z1 (0%) during the stable operation phase. Moreover, high throughput sequencing analysis showed that halophilic bacterium, such as Halomonas, Rhodococcus, remained greater survival advantages in high salinity system. The substantial enrichment of Flavobacterium, Dokdonella, Paracoccus observed in Z4 ensured its excellent nitrogen removal performance. The close cooperation among dominant functional bacteria was strengthened when salt content was below 1.5% while exceeding 1.5% led to the collapse of metabolic capacity through integrating the toxicity of aniline and high osmotic pressure.


Asunto(s)
Compuestos de Anilina , Biodegradación Ambiental , Contaminantes Químicos del Agua , Compuestos de Anilina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Salino , Bacterias/metabolismo , Bacterias/genética , Reactores Biológicos/microbiología , Salinidad
20.
BMC Pediatr ; 24(1): 299, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702595

RESUMEN

PURPOSE: We aimed to investigated the influencing risk factors of voriconazole-induced liver injury in Uygur pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). METHODS: This was a prospective cohort design study. High-performance liquid chromatography-mass spectrometry was employed to monitor voriconazole concentration. First-generation sequencing was performed to detect gene polymorphisms. Indicators of liver function were detected at least once before and after voriconazole therapy. RESULTS: Forty-one patients were included in this study, among which, 15 patients (36.6%) had voriconazole-induced liver injury. The proportion of voriconazole trough concentration > 5.5 µg·mL-1 patients within the DILI group (40.0%) was significantly higher compared to the control group (15.4%) (p < 0.05). After administration of voriconazole, the values of ALT (103.3 ± 80.3 U/L) and AST (79.9 ± 60.6 U/L) in the DILI group were higher than that in the control group (24.3 ± 24.8 and 30.4 ± 8.6 U/L) (p < 0.05). There was no significant difference between the two groups in genotype and allele frequencies of CYP2C19*2, CYP2C19*3, CYP2C19*17, and UGT1A4 (rs2011425) (p > 0.05). CONCLUSION: There was a significant correlation between voriconazole-induced liver injury and voriconazole trough concentration in high-risk Uygur pediatric patients with allogeneic HSCT.


Asunto(s)
Antifúngicos , Enfermedad Hepática Inducida por Sustancias y Drogas , Trasplante de Células Madre Hematopoyéticas , Voriconazol , Humanos , Voriconazol/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Niño , Masculino , Femenino , Estudios Prospectivos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Factores de Riesgo , Antifúngicos/efectos adversos , Preescolar , China , Adolescente , Citocromo P-450 CYP2C19/genética , Trasplante Homólogo/efectos adversos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda