RESUMEN
Ultraviolet crosslinking and immunoprecipitation (CLIP) methodologies enable the identification of RNA binding sites of RNA-binding proteins (RBPs). Despite improvements in the library preparation of RNA fragments, the enhanced CLIP (eCLIP) protocol requires 4 days of hands-on time and lacks the ability to process several RBPs in parallel. We present a new method termed antibody-barcode eCLIP that utilizes DNA-barcoded antibodies and proximity ligation of the DNA oligonucleotides to RBP-protected RNA fragments to interrogate several RBPs simultaneously. We observe performance comparable with that of eCLIP with the advantage of dramatically increased scaling while maintaining the same material requirement of a single eCLIP experiment.
Asunto(s)
ARN , Transcriptoma , ARN/genética , Sitios de Unión , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Anticuerpos/química , InmunoprecipitaciónRESUMEN
Liver disease, including hepatocellular carcinoma (HCC), is a major global health concern, claiming approximately 2 million lives worldwide annually, yet curative treatments remain elusive. In this study, we aimed to investigate the role of microRNA-21-5p (miR-21) in metabolic dysfunction-associated steatotic liver disease (previously NAFLD), metabolic-associated steatohepatitis (previously NASH), and HCC within the context of a Western high-fat diet, without additional choline (HFD) and offering potential therapeutic insights. We found that reduced miR-21 levels correlated with liver disease progression in WT mice fed on HFD, while miR-21 knockout mice showed exacerbated metabolic dysfunction, including obesity, hepatomegaly, hyperglycemia, insulin resistance, steatosis, fibrosis, and HCC. Our study reveals that miR-21 plays a protective role in metabolic syndrome and in the progression of liver disease to cancer. MiR-21 directly targets Transforming growth factor beta-induced (Tgfbi), a gene also known to be significantly upregulated and a potential oncogene in HCC. Further, our study showed that intervention with the administration of a miR-21 mimic in WT livers effectively improves insulin sensitivity, steatosis, fibrosis, Tgfbi expression and tumor burden in HFD conditions. These findings indicate that miR-21 could serve as an effective strategy to delay or prevent liver disease in high-fat-diet environments.