Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Am Chem Soc ; 146(18): 12547-12555, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656766

RESUMEN

Three-dimensional (3D) crystalline organic frameworks with complex topologies, high surface area, and low densities afford a variety of application prospects. However, the design and construction of these frameworks have been largely limited to systems containing polyhedron-shaped building blocks or those relying on component interpenetration. Here, we report the synthesis of a 3D crystalline organic framework based on molecular mortise-and-tenon jointing. This new material takes advantage of tetra(4-pyridylphenyl)ethylene and chlorinated bis(benzodioxaborole)benzene as building blocks and is driven by dative B-N bonds. A single-crystal X-ray diffraction analysis of the framework reveals the presence of two-dimensional (2D) layers with helical channels that are formed presumably during the boron-nitrogen coordination process. The protrusion of dichlorobenzene units from the upper and lower surfaces of the 2D layers facilitates the key mortise-and-tenon connections. These connections enable the interlocking of adjacent layers and the stabilization of an overall 3D framework. The resulting framework is endowed with high porosity and attractive mechanical properties, rendering it potentially suitable for the removal of impurities from acetylene.

2.
Angew Chem Int Ed Engl ; 63(33): e202403473, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38829678

RESUMEN

Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystalline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly linked benzoxazine rings. The validity of their crystal structures has been directly visualized through state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystalline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94 % enantiomeric excess.

3.
Angew Chem Int Ed Engl ; 62(9): e202211461, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36156351

RESUMEN

Currently, less favorable C=O hydrogenation and weak concerted acid catalysis cause unsatisfactory catalytic performance in the upgrading of biomass-derived furfurals (i.e., furfural, 5-methyl furfural, and 5-hydroxymethyl furfural) to ketones (i.e., cyclopentanone, 2,5-hexanedione, and 1-hydroxyl-2,5-hexanedione). A series of partially oxidized MAX phase (i.e., Ti3 AlC2 , Ti2 AlC, Ti3 SiC2 ) supporting Pd catalysts were fabricated, which showed high catalytic activity; Pd/Ti3 AlC2 in particular displayed high performance for conversion of furfurals into targeted ketones. Detailed studies of the catalytic mechanism confirm that in situ hydrogen spillover generates Frustrated Lewis H+ -H- pairs, which not only act as the hydrogenation sites for selective C=O hydrogenation but also provide acid sites for ring opening. The close intimate hydrogenation and acid sites promote bifunctional catalytic reactions, substantially reducing the reported minimum reaction temperature of various furfurals by at least 30-60 °C.

4.
J Am Chem Soc ; 144(14): 6475-6482, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35377630

RESUMEN

Two-dimensional (2D) covalent organic frameworks (COFs) possess designable pore architectures but limited framework topologies. Until now, 2D COFs adopting the kgd topology with ordered and rhombic pore geometry have rarely been reported. Here, an isoreticular series of 2D COFs with the kgd topology and controllable pore size is synthesized by employing a C6-symmetric aldehyde, i.e., hexa(4-formylphenyl)benzene (HFPB), and C3-symmetric amines i.e., tris(4-aminophenyl)amine (TAPA), tris(4-aminophenyl)trazine (TAPT), and 1,3,5-tris[4-amino(1,1-biphenyl-4-yl)]benzene (TABPB), as building units, referred to as HFPB-TAPA, HFPB-TAPT, and HFPB-TABPB, respectively. The micropore dimension down to 6.7 Å is achieved in HFPB-TAPA, which is among the smallest pore size of reported 2D COFs. Impressively, both the in-plane network and stacking sequence of the 2D COFs can be clearly observed by low-dose electron microscopy. Integrating the unique kgd topology with small rhombic micropores, these 2D COFs are endowed with both short molecular diffusion length and favorable host-guest interaction, exhibiting potential for drug delivery with high loading and good release control of ibuprofen.


Asunto(s)
Estructuras Metalorgánicas , Benceno , Sistemas de Liberación de Medicamentos
5.
Macromol Rapid Commun ; 43(23): e2200542, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35856411

RESUMEN

2D conducting polymer thin film recently has garnered numerous interests as a means of combining the molecular aggregate ordering and promoting in-plane charge transport for large-scale/flexible organic electronics. However, it remains far from satisfactory for conducting polymer chains to achieve desirable surface topography and crystallinity due to lack of control over the precursor-involved interfacial assembly. Herein, wafer-size polyaniline (PANI) and tetra-aniline thin films are developed via a controlled interfacial synthesis with customized surface morphology and crystallinity through two typical aniline precursors selective polymerization. Two crucial competing assembly mechanisms, a) direct interfacial polymerization, b) solution polymerization and subsequent interfacial assembly, are investigated to play a vital role in determining elemental chain length and aggregate architecture. The optimal PANI thin film manifests ultraflat surface topography and unambiguous crystalline domains, which also enabling fascinating ammonia sensing capability with 31.4% ppm-1 sensitivity, fast response time (88 s) with astonishing selectivity, repeatability, and recovery capability. The thus-demonstrated strategy with wafer-scale processing potential and flexible microdevice offers a promising route for large-scale manufacturing thin-film organic electronics.


Asunto(s)
Compuestos de Anilina , Polímeros , Polimerizacion , Compuestos de Anilina/química
6.
Angew Chem Int Ed Engl ; 61(32): e202204899, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35639417

RESUMEN

The structural diversity of three-dimensional (3D) covalent organic frameworks (COFs) are limited as there are only a few choices of building units with multiple symmetrically distributed connection sites. To date, 4 and 6-connected stereoscopic nodes with Td , D3h , D3d and C3 symmetries have been mostly reported, delivering limited 3D topologies. We propose an efficient approach to expand the 3D COF repertoire by introducing a high-valency quadrangular prism (D4h ) stereoscopic node with a connectivity of eight, based on which two isoreticular 3D imine-linked COFs can be created. Low-dose electron microscopy allows the direct visualization of their 2-fold interpenetrated bcu networks. These 3D COFs are endowed with unique pore architectures and strong molecular binding sites, and exhibit excellent performance in separating C2 H2 /CO2 and C2 H2 /CH4 gas pairs. The introduction of high-valency stereoscopic nodes would lead to an outburst of new topologies for 3D COFs.

7.
Sensors (Basel) ; 19(20)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658617

RESUMEN

Hospitals need to invest a lot of manpower to manually input the contents of medical invoices (nearly 300,000,000 medical invoices a year) into the medical system. In order to help the hospital save money and stabilize work efficiency, this paper designed a system to complete the complicated work using a Gaussian blur and smoothing-convolutional neural network combined with a recurrent neural network (GBS-CR) method. Gaussian blur and smoothing (GBS) is a novel preprocessing method that can fix the breakpoint font in medical invoices. The combination of convolutional neural network (CNN) and recurrent neural network (RNN) was used to raise the recognition rate of the breakpoint font in medical invoices. RNN was designed to be the semantic revision module. In the aspect of image preprocessing, Gaussian blur and smoothing were used to fix the breakpoint font. In the period of making the self-built dataset, a certain proportion of the breakpoint font (the font of breakpoint is 3, the original font is 7) was added, in this paper, so as to optimize the Alexnet-Adam-CNN (AA-CNN) model, which is more suitable for the recognition of the breakpoint font than the traditional CNN model. In terms of the identification methods, we not only adopted the optimized AA-CNN for identification, but also combined RNN to carry out the semantic revisions of the identified results of CNN, meanwhile further improving the recognition rate of the medical invoices. The experimental results show that compared with the state-of-art invoice recognition method, the method presented in this paper has an average increase of 10 to 15 percentage points in recognition rate.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos , Humanos , Distribución Normal , Semántica
8.
J Am Chem Soc ; 140(43): 14342-14349, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30289708

RESUMEN

Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.

9.
Sensors (Basel) ; 18(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513898

RESUMEN

In order to solve the problem of face recognition in complex environments being vulnerable to illumination change, object rotation, occlusion, and so on, which leads to the imprecision of target position, a face recognition algorithm with multi-feature fusion is proposed. This study presents a new robust face-matching method named SR-CNN, combining the rotation-invariant texture feature (RITF) vector, the scale-invariant feature transform (SIFT) vector, and the convolution neural network (CNN). Furthermore, a graphics processing unit (GPU) is used to parallelize the model for an optimal computational performance. The Labeled Faces in the Wild (LFW) database and self-collection face database were selected for experiments. It turns out that the true positive rate is improved by 10.97⁻13.24% and the acceleration ratio (the ratio between central processing unit (CPU) operation time and GPU time) is 5⁻6 times for the LFW face database. For the self-collection, the true positive rate increased by 12.65⁻15.31%, and the acceleration ratio improved by a factor of 6⁻7.


Asunto(s)
Identificación Biométrica/métodos , Cara/anatomía & histología , Reconocimiento Facial , Redes Neurales de la Computación , Algoritmos , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 48(3): 373-377, 2017 May.
Artículo en Zh | MEDLINE | ID: mdl-28616909

RESUMEN

OBJECTIVES: To investigate the expression of migration-inducing gene 7 (MIG7) in different HCC lines and its relationship with vasculogenic mimicry (VM) formation and metastatic potentiality. METHODS: Employing immunostaining to detect MIG7 protein expression and VM formation in 40 matched pairs of primary and metastatic HCC specimens from 40 patients, and investigating the correlation of VM formation with MIG7 protein expression. Detecting VM formation in HCC lines with different metastatic ability (MHCC-97H, MHCC-97L, Huh-7) and human normal hepatocyte line (L-02) through three-dimensional culture, and detecting MIG7 mRNA expression with RT-PCR, investigating the correlation of MIG7 protein expression with VM formation and HCC metastatic potentiality with Western blot assay; screening the HCC cell line with high MIG7 expression. RESULTS: In 40 matched pairs of HCC tissue, there was a significant positive correlation between MIG7 protein expression and VM formation ( rs=0.595, P<0.01). The capability of VM formation of MHCC-97H with high metastatic potentiality was stronger than that of MHCC-97L with low metastatic potentiality and Huh-7 with non-metastatic potentiality, and there was no VM formation in L-02. The result of RT-PCR and Western blot assay indicated the same. CONCLUSIONS: MIG7 expression in HCC tissue is high and correlated positively with VM formation. MIG7 expression in different HCC cell lines is coincident with theirs VM formation, invasion and metastasis. MIG7 is a potential target for inhibiting the invasion and metastasis of HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/metabolismo , Metástasis de la Neoplasia
11.
Nat Chem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026092

RESUMEN

The aesthetic and practicality of macroscopic fabrics continue to encourage chemists to weave molecules into interlaced patterns with the aim of providing emergent physical and chemical properties when compared with their starting materials. Weaving purely organic molecular threads into flawless two-dimensional patterns remains a formidable challenge, even though its feasibility has been proposed on several occasions. Herein we describe the synthesis of a flawless, purely organic, free-standing two-dimensional woven polymer network driven by dative B-N bonds. Single crystals of this woven polymer network were obtained and its well-defined woven topology was revealed by X-ray diffraction analysis. Free-standing two-dimensional monolayer nanosheets of the woven polymer network were exfoliated from the layered crystals using Scotch Magic Tape. The surface features of the nanosheets were investigated by integrated low-dose and cryogenic electron microscopy imaging techniques. These findings demonstrate the precise construction of purely organic woven polymer networks and highlight the unique opportunities for the application of woven topologies in two-dimensional organic materials.

12.
Nat Commun ; 14(1): 5831, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730724

RESUMEN

Riemann surfaces inspired chemists to design and synthesize such multidimensional curved carbon architectures. It has been predicted that carbon nanosolenoid materials with Riemann surfaces have unique structures and novel physical properties. Here we report the first synthesis of a nitrogen-doped carbon nanosolenoid (N-CNS) using bottom-up approach with a well-defined structure. N-CNS was obtained by a rational Suzuki polymerization, followed by oxidative cyclodehydrogenation. The successful synthesis of N-CNS was fully characterized by GPC, FTIR, solid-state 13C NMR and Raman techniques. The intrinsic single-strand molecular structures of N-CNS helices can be clearly resolved using low-dose integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) technique. Possessing unique structural and physical properties, this long π-extended polymer N-CNS can provide new insight towards bottom-up syntheses of curved nanoribbons and potential applications as a metal-free photocatalyst for visible-light-driven H2 evolution and highly efficient photocatalyst for photoredox organic transformations.

13.
Sci Adv ; 9(27): eadi1169, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406124

RESUMEN

The integration of mechanically interlocked molecules (MIMs) into purely organic crystalline materials is expected to produce materials with properties that are not accessible using more classic approaches. To date, this integration has proved elusive. We present a dative boron-nitrogen bond-driven self-assembly strategy that allows for the preparation of polyrotaxane crystals. The polyrotaxane nature of the crystalline material was confirmed by both single-crystal x-ray diffraction analysis and cryogenic high-resolution low-dose transmission electron microscopy. Enhanced softness and greater elasticity are seen for the polyrotaxane crystals than for nonrotaxane polymer controls. This finding is rationalized in terms of the synergetic microscopic motion of the rotaxane subunits. The present work thus highlights the benefits of integrating MIMs into crystalline materials.

14.
Dalton Trans ; 51(20): 7790-7796, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35575419

RESUMEN

Finely modulating the morphology of bimetallic nanomaterials plays a vital role in enhancing their catalytic activities. Among the various morphologies, concave structures have received considerable attention due to the three advantageous features of high-index facets, high surface areas, and high curvatures, which contribute greatly to enhancing the catalytic performance. However, concave morphologies are not the products generated from thermodynamically controlled growth with minimized surface energy. Additionally, most nanocrystals with concave shapes are currently in the state of mono-metals or alloys with disordered arrangements of atoms. The synthesis of alloy structures with ordered atom arrangements, intermetallic compounds, which tend to display superior catalytic performance on account of their optimal geometric and electronic effects, has rarely been reported as high-temperature annealing is usually needed, which constrains the modulation of morphology and surface structure. In this work, concave one-dimensional Au-Cu nanorods with a partially ordered intermetallic structure were synthesized via a facile wet chemical method. By simply adjusting the reaction kinetics via the concentrations of the corresponding metal precursors, the degree of concavity of the one-dimensional Au-Cu nanorods could be regulated. In both the p-nitrophenol reduction and CO2 electro-reduction reactions, the concave-shaped Au-Cu nanorods demonstrated superior catalytic activity compared to corresponding non-concave samples with the same structure due to the morphological advantages provided by the concave structure.

15.
Nanomaterials (Basel) ; 12(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144941

RESUMEN

The oxygen evolution reaction (OER) is a crucial reaction in water splitting, metal-air batteries, and other electrochemical conversion technologies. Rationally designed catalysts with rich active sites and high intrinsic activity have been considered as a hopeful strategy to address the sluggish kinetics for OER. However, constructing such active sites in non-noble catalysts still faces grand challenges. To this end, we fabricate a Ni2P@Fe2P core-shell structure with outperforming performance toward OER via chemical transformation of rationally designed Ni-MOF hybrid nanosheets. Specifically, the Ni-MOF nanosheets and their supported Fe-based nanomaterials were in situ transformed into porous Ni2P@Fe2P core-shell nanosheets composed of Ni2P and Fe2P nanodomains in homogenous dispersion via a phosphorization process. When employed as the OER electrocatalyst, the Ni2P@Fe2P core-shell nanosheets exhibits excellent OER performance, with a low overpotential of 238/247 mV to drive 50/100 mA cm-2, a small Tafel slope of 32.91 mV dec-1, as well as outstanding durability, which could be mainly ascribed to the strong electronic interaction between Ni2P and Fe2P nanodomains stabilizing more Ni and Fe atoms with higher valence. These high-valence metal sites promote the generation of high-active Ni/FeOOH to enhance OER activity.

16.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35808051

RESUMEN

The oxygen evolution reaction (OER) occurs at the anode in numerous electrochemical reactions and plays an important role due to the nature of proton-coupled electron transfer. However, the high voltage requirement and low stability of the OER dramatically limits the total energy converting efficiency. Recently, electrocatalysts based on multi-metal oxyhydroxides have been reported as excellent substitutes for commercial noble metal catalysts due to their outstanding OER activities. However, normal synthesis routes lead to either the encapsulation of excessively active sites or aggregation during the electrolysis. To this end, we design a novel core-shell structure integrating CoMoO4 as support frameworks covered with two-dimensional γ-FeOOH nanosheets on the surface. By involving CoMoO4, the electrochemically active surface area is significantly enhanced. Additionally, Co atoms immerge into the γ-FeOOH nanosheet, tuning its electronic structure and providing additional active sites. More importantly, the catalysts exhibit excellent OER catalytic performance, reducing overpotentials to merely 243.1 mV a versus 10 mA cm-2. The current strategy contributes to advancing the frontiers of new types of OER electrocatalysts by applying a proper support as a multi-functional platform.

17.
Nat Commun ; 13(1): 1239, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264586

RESUMEN

Riemann surfaces are deformed versions of the complex plane in mathematics. Locally they look like patches of the complex plane, but globally, the topology may deviate from a plane. Nanostructured graphitic carbon materials resembling a Riemann surface with helicoid topology are predicted to have interesting electronic and photonic properties. However, fabrication of such processable and large π-extended nanographene systems has remained a major challenge. Here, we report a bottom-up synthesis of a metal-free carbon nanosolenoid (CNS) material with a low optical bandgap of 1.97 eV. The synthesis procedure is rapid and possible on the gram scale. The helical molecular structure of CNS can be observed by direct low-dose high-resolution imaging, using integrated differential phase contrast scanning transmission electron microscopy. Magnetic susceptibility measurements show paramagnetism with a high spin density for CNS. Such a π-conjugated CNS allows for the detailed study of its physical properties and may form the base of the development of electronic and spintronic devices containing CNS species.

18.
Adv Mater ; 34(11): e2109718, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34990512

RESUMEN

Membrane distillation has attracted great attention in the development of sustainable desalination and zero-discharge processes because of its possibility of recovering 100% water and the potential for integration with low-grade heat, such as solar energy. However, the conventional membrane structures and materials afford limited flux thus obstructing its practical application. Here, ultrathin nanoporous graphene membranes are reported by selectively forming thin graphene layers on the top edges of a highly porous anodic alumina oxide support, which creates short and fast transport pathways for water vapor but not liquid. The process avoids the challenging pore-generation and substrate-transfer processes required to prepare regular graphene membranes. In the direct-contact membrane distillation mode under a mild temperature pair of 65/25 °C, the nanoporous graphene membranes show an average water flux of 421.7 L m-2 h-1 with over 99.8% salt rejection, which is an order of magnitude higher than any reported polymeric membranes. The mechanism for high water flux is revealed by detailed characterizations and theoretical modeling. Outdoor field tests using water from the Red Sea heated under direct sunlight radiation show that the membranes have an average water flux of 86.3 L m-2 h-1 from 8 am to 8 pm, showing a great potential for real applications in seawater desalination.

19.
Mater Horiz ; 9(1): 383-392, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34586118

RESUMEN

Recent advances in wearable and implantable electronics have increased the demand for biocompatible integrated energy storage systems. Conducting polymers, such as polyaniline (PANi), have been suggested as promising electrode materials for flexible biocompatible energy storage systems, based on their intrinsic structural flexibility and potential polymer chain compatibility with biological interfaces. However, due to structural disorder triggering insufficient electronic conductivity and moderate electrochemical stability, PANi still cannot fully satisfy the requirements for flexible and biocompatible energy storage systems. Herein, we report a biocompatible physiological electrolyte activated flexible supercapacitor encompassing crystalline tetra-aniline (c-TANi) as the active electrode material, which significantly enhances the specific capacitance and electrochemical cycling stability with chloride electrochemical interactions. The crystallization of TANi endows it with sufficient electronic conductivity (8.37 S cm-1) and a unique Cl- dominated redox charge storage mechanism. Notably, a fully self-healable and biocompatible supercapacitor has been assembled by incorporating polyethylene glycol (PEG) with c-TANi as a self-healable electrode and a ferric-ion cross-linked sodium polyacrylate (Fe3+-PANa)/0.9 wt% NaCl as a gel electrolyte. The as-prepared device exhibits a remarkable capacitance retention even after multiple cut/healing cycles. With these attractive features, the c-TANi electrode presents a promising approach to meeting the power requirements for wearable or implantable electronics.


Asunto(s)
Compuestos de Anilina , Cloruros , Capacidad Eléctrica , Electrodos , Electrólitos
20.
Front Neurol ; 12: 692128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764924

RESUMEN

Objectives: To investigate the predictive factors for successful recanalization based on digital subtraction angiography and three-dimensional T1W sampling perfection with application-optimized contrasts using different flip angle evolutions (3D T1-SPACE) high-resolution magnetic resonance imaging (MRI) signal features. Methods: Consecutive internal carotid artery occlusion cases with ipsilateral ischemic stroke refractory to therapy who visited our institution between February 2017 and August 2020 were retrospectively analyzed. Epidemiology, symptomatology, imaging morphology on angiography and MRI, peri-procedural complications, technical success rate, and follow-up results were summarized. Factors related to technical success were analyzed using univariate and multivariate analyses. Results: In total, 75 cases (53 men, mean age 57.51 ± 9.71 years) were included. The total successful recanalization rate was 72.00% (54/75), with a complication rate of 13.33% (9/75). Through multivariate analysis, first ischemic stroke in <3 months (OR: 2.57; 95% CI: 1.13-4.58), tapered stump (OR: 4.31; 95% CI: 1.37-13.55), reversed flow of the ophthalmic artery (OR: 2.99; 95% CI: 1.06-8.49), high intraluminal signal on unenhanced T1-SPACE sequence (OR: 16.15; 95% CI: 3.40-76.72), no vessel wall collapse (OR: 17.00; 95% CI: 3.57-81.02), short occlusion length (OR: 9.87; 95% CI: 2.09-46.64), and primary occlusion site at the cervical internal carotid artery (OR: 8.42; 95% CI: 1.04-68.19) were associated with successful recanalization. Conclusion: Besides traditional features such as short ischemic event time, tapered stump, and distal ICA reconstitution by the ophthalmic artery, our study demonstrates that luminal and mural changes determined by 3D SPACE high-resolution MRI could also predict successful endovascular recanalization. Endovascular recanalization for non-acute internal carotid artery occlusion is feasible, but prudent case selection is mandatory considering the high periprocedural complication rate.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda