RESUMEN
High altitude (HA) ascent imposes systemic hypoxia and associated risk of acute mountain sickness. Acute hypoxia elicits a hypoxic ventilatory response (HVR), which is augmented with chronic HA exposure (i.e., ventilatory acclimatization; VA). However, laboratory-based HVR tests lack portability and feasibility in field studies. As an alternative, we aimed to characterize area under the curve (AUC) calculations on Fenn diagrams, modified by plotting portable measurements of end-tidal carbon dioxide ( P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) against peripheral oxygen saturation ( S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to characterize and quantify VA during incremental ascent to HA (n = 46). Secondarily, these participants were compared with a separate group following the identical ascent profile whilst self-administering a prophylactic oral dose of acetazolamide (Az; 125 mg BID; n = 20) during ascent. First, morning P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ measurements were collected on 46 acetazolamide-free (NAz) lowland participants during an incremental ascent over 10 days to 5160 m in the Nepal Himalaya. AUC was calculated from individually constructed Fenn diagrams, with a trichotomized split on ranked values characterizing the smallest, medium, and largest magnitudes of AUC, representing high (n = 15), moderate (n = 16), and low (n = 15) degrees of acclimatization. After characterizing the range of response magnitudes, we further demonstrated that AUC magnitudes were significantly smaller in the Az group compared to the NAz group (P = 0.0021), suggesting improved VA. These results suggest that calculating AUC on modified Fenn diagrams has utility in assessing VA in large groups of trekkers during incremental ascent to HA, due to the associated portability and congruency with known physiology, although this novel analytical method requires further validation in controlled experiments. HIGHLIGHTS: What is the central question of this study? What are the characteristics of a novel methodological approach to assess ventilatory acclimatization (VA) with incremental ascent to high altitude (HA)? What is the main finding and its importance? Area under the curve (AUC) magnitudes calculated from modified Fenn diagrams were significantly smaller in trekkers taking an oral prophylactic dose of acetazolamide compared to an acetazolamide-free group, suggesting improved VA. During incremental HA ascent, quantifying AUC using modified Fenn diagrams is feasible to assess VA in large groups of trekkers with ascent, although this novel analytical method requires further validation in controlled experiments.
Asunto(s)
Aclimatación , Acetazolamida , Mal de Altura , Altitud , Hipoxia , Acetazolamida/farmacología , Humanos , Aclimatación/fisiología , Masculino , Adulto , Mal de Altura/fisiopatología , Femenino , Hipoxia/fisiopatología , Inhibidores de Anhidrasa Carbónica/farmacología , Adulto Joven , Dióxido de Carbono/metabolismo , Saturación de Oxígeno/fisiología , Saturación de Oxígeno/efectos de los fármacos , Ventilación Pulmonar/efectos de los fármacos , Ventilación Pulmonar/fisiologíaRESUMEN
NEW FINDINGS: What is the central question of this study? We assessed the utility of a new metric for quantifying ventilatory acclimatization to high altitude, derived from differential ascent and descent steady-state cardiorespiratory variables (i.e. hysteresis). Furthermore, we aimed to investigate whether the magnitude of cardiorespiratory hysteresis was associated with the development of acute mountain sickness. What is the main finding and its importance? Hysteresis in steady-state cardiorespiratory variables quantifies ventilatory acclimatization to high altitude. The magnitude of cardiorespiratory hysteresis during ascent to and descent from high altitude was significantly related to the development of symptoms of acute mountain sickness. Hysteresis in steady-state chemoreflex drive can provide a simple, non-invasive method of tracking ventilatory acclimatization to high altitude. ABSTRACT: Maintenance of arterial blood gases is achieved through sophisticated regulation of ventilation, mediated by central and peripheral chemoreflexes. Respiratory chemoreflexes are important during exposure to high altitude owing to the competing influence of hypoxia and hypoxic hyperventilation-mediated hypocapnia on steady-state ventilatory drive. Inter-individual variability exists in ventilatory acclimatization to high altitude, potentially affecting the development of acute mountain sickness (AMS). We aimed to quantify ventilatory acclimatization to high altitude by comparing differential ascent and descent values (i.e. hysteresis) in steady-state cardiorespiratory variables. We hypothesized that: (i) the hysteresis area formed by cardiorespiratory variables during ascent and descent would quantify the magnitude of ventilatory acclimatization; and (ii) larger hysteresis areas would be associated with lower AMS symptom scores during ascent. In 25 healthy, acetazolamide-free trekkers ascending to and descending from 5160 m, cardiorespiratory hysteresis was measured in the partial pressure of end-tidal CO2 , peripheral oxygen saturation, minute ventilation, chemoreceptor stimulus index (end-tidal CO2 /peripheral oxygen saturation) and the calculated steady-state chemoreflex drive (SS-CD; minute ventilation/chemoreceptor stimulus index) using portable devices (capnograph, peripheral pulse oximeter and respirometer, respectively). Symptoms of AMS were assessed daily using the Lake Louise questionnaire. We found that: (i) ascent-descent hysteresis was present in all cardiorespiratory variables; (ii) SS-CD is a valid metric for tracking ventilatory acclimatization to high altitude; and (iii) the highest AMS scores during ascent exhibited a significant, moderate and inverse correlation with the magnitude of SS-CD hysteresis (rs = -0.408, P = 0.043). We propose that ascent-descent hysteresis is a new and feasible way to quantify ventilatory acclimatization in trekkers during high-altitude exposure.
Asunto(s)
Aclimatación/fisiología , Mal de Altura/fisiopatología , Altitud , Saturación de Oxígeno/fisiología , Adulto , Humanos , Hipoxia/fisiopatología , Pulmón/fisiopatología , Oxígeno/sangreRESUMEN
NEW FINDINGS: What is the central question of this study? What is the relative contribution of a putative tonic splenic contraction to the haematological acclimatization process during high altitude ascent in native lowlanders? What is the main finding and its importance? Spleen volume decreased by -14.3% (-15.2 ml) per 1000 m ascent, with an attenuated apnoea-induced [Hb] increase, attesting to a tonic splenic contraction during high altitude ascent. The [Hb]-enhancing function of splenic contraction may contribute to restoring oxygen content early in the acclimatization process at high altitude. ABSTRACT: Voluntary apnoea causes splenic contraction and reductions in heart rate (HR; bradycardia), and subsequent transient increases in haemoglobin concentration ([Hb]). Ascent to high altitude (HA) induces systemic hypoxia and reductions in oxygen saturation ( SpO2 ), which may cause tonic splenic contraction, which may contribute to haematological acclimatization associated with HA ascent. We measured resting cardiorespiratory variables (HR, SpO2 , [Hb]) and resting splenic volume (via ultrasound) during incremental ascent from 1400 m (day 0) to 3440 m (day 3), 4240 m (day 7) and 5160 m (day 10) in non-acclimatized native lowlanders during assent to HA in the Nepal Himalaya. In addition, apnoea-induced responses in HR, SpO2 and splenic volume were measured before and after two separate voluntary maximal apnoeas (A1-A2) at 1400, 3440 and 4240 m. Resting spleen volume decreased -14.3% (-15.2 ml) per 1000 m with ascent, from 140 ± 41 ml (1400 m) to 108 ± 28 ml (3440 m; P > 0.99), 94 ± 22 ml (4240 m; P = 0.009) and 84 ± 28 ml (5160 m; P = 0.029), with concomitant increases in [Hb] from 125 ± 18.3 g l-1 (1400 m) to 128 ± 10.4 g l-1 (3440 m), 138.8 ± 12.7 g l-1 (4240 m) and 157.5 ± 8 g l-1 (5160 m; P = 0.021). Apnoea-induced splenic contraction was 50 ± 15 ml (1400 m), 44 ± 17 ml (3440 m; P > 0.99) and 26 ± 8 ml (4240 m; P = 0.002), but was not consistently associated with increases in [Hb]. The apnoea-induced bradycardia was more pronounced at 3440 m (A1: P = 0.04; A2: P = 0.094) and at 4240 m (A1: P = 0.037 A2: P = 0.006) compared to values at 1400 m. We conclude that hypoxia-induced splenic contraction at rest (a) may contribute to restoring arterial oxygen content through its [Hb]-enhancing contractile function and (b) eliminates further apnoea-induced [Hb] increases in hypoxia. We suggest that tonic splenic contraction may contribute to haematological acclimatization early in HA ascent in humans.
Asunto(s)
Altitud , Apnea/fisiopatología , Contracción Muscular/fisiología , Saturación de Oxígeno/fisiología , Aclimatación/fisiología , Adulto , Femenino , Humanos , Hipoxia/fisiopatología , Masculino , Consumo de Oxígeno/fisiologíaRESUMEN
High-altitude ascent imposes a unique cerebrovascular challenge due to two opposing blood gas chemostimuli. Specifically, hypoxia causes cerebral vasodilation, whereas respiratory-induced hypocapnia causes vasoconstriction. The conflicting nature of these two superimposed chemostimuli presents a challenge in quantifying cerebrovascular reactivity (CVR) in chronic hypoxia. During incremental ascent to 4240 m over 7 days in the Nepal Himalaya, we aimed to (a) characterize the relationship between arterial blood gas stimuli and anterior, posterior and global (g)CBF, (b) develop a novel index to quantify cerebral blood flow (CBF) in relation to conflicting steady-state chemostimuli, and (c) assess these relationships with cerebral oxygenation (rSO2). On rest days during ascent, participants underwent supine resting measures at 1045 m (baseline), 3440 m (day 3) and 4240 m (day 7). These measures included pressure of arterial (Pa)CO2, PaO2, arterial O2 saturation (SaO2; arterial blood draws), unilateral anterior, posterior and gCBF (duplex ultrasound; internal carotid artery [ICA] and vertebral artery [VA], gCBF [{ICA + VA} × 2], respectively) and rSO2 (near-infrared spectroscopy). We developed a novel stimulus index (SI), taking into account both chemostimuli (PaCO2/SaO2). Subsequently, CBF was indexed against the SI to assess steady-state cerebrovascular responsiveness (SS-CVR). When both competing chemostimuli are taken into account, (a) SS-CVR was significantly higher in ICA, VA and gCBF at 4240 m compared to lower altitudes, (b) delta SS-CVR with ascent (1045 m vs. 4240 m) was higher in ICA vs. VA, suggesting regional differences in CBF regulation, and (c) ICA SS-CVR was strongly and positively correlated (r = 0.79) with rSO2 at 4240 m.
Asunto(s)
Aclimatación/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Dióxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Oxígeno/metabolismo , Adulto , Altitud , Velocidad del Flujo Sanguíneo/fisiología , Arteria Carótida Interna/metabolismo , Arteria Carótida Interna/fisiopatología , Femenino , Humanos , Hipocapnia/metabolismo , Hipocapnia/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Vasoconstricción/fisiología , Arteria Vertebral/metabolismo , Arteria Vertebral/fisiología , Adulto JovenRESUMEN
KEY POINTS: Ascent to high altitude imposes an acid-base challenge in which renal compensation is integral for maintaining pH homeostasis, facilitating acclimatization and helping prevent mountain sicknesses. The time-course and extent of plasticity of this important renal response during incremental ascent to altitude is unclear. We created a novel index that accurately quantifies renal acid-base compensation, which may have laboratory, fieldwork and clinical applications. Using this index, we found that renal compensation increased and plateaued after 5 days of incremental altitude exposure, suggesting plasticity in renal acid-base compensation mechanisms. The time-course and extent of plasticity in renal responsiveness may predict severity of altitude illness or acclimatization at higher or more prolonged stays at altitude. ABSTRACT: Ascent to high altitude, and the associated hypoxic ventilatory response, imposes an acid-base challenge, namely chronic hypocapnia and respiratory alkalosis. The kidneys impart a relative compensatory metabolic acidosis through the elimination of bicarbonate (HCO3- ) in urine. The time-course and extent of plasticity of the renal response during incremental ascent is unclear. We developed an index of renal reactivity (RR), indexing the relative change in arterial bicarbonate concentration ([HCO3- ]a ) (i.e. renal response) against the relative change in arterial pressure of CO2 ( PaCO2 ) (i.e. renal stimulus) during incremental ascent to altitude ( Δ[HCO3-]a/ΔPaCO2 ). We aimed to assess whether: (i) RR magnitude was inversely correlated with relative changes in arterial pH (ΔpHa ) with ascent and (ii) RR increased over time and altitude exposure (i.e. plasticity). During ascent to 5160 m over 10 days in the Nepal Himalaya, arterial blood was drawn from the radial artery for measurement of blood gas/acid-base variables in lowlanders at 1045/1400 m and after 1 night of sleep at 3440 m (day 3), 3820 m (day 5), 4240 m (day 7) and 5160 m (day 10) during ascent. At 3820 m and higher, RR significantly increased and plateaued compared to 3440 m (P < 0.04), suggesting plasticity in renal acid-base compensations. At all altitudes, we observed a strong negative correlation (r ≤ -0.71; P < 0.001) between RR and ΔpHa from baseline. Renal compensation plateaued after 5 days of altitude exposure, despite subsequent exposure to higher altitudes. The time-course, extent of plasticity and plateau in renal responsiveness may predict severity of altitude illness or acclimatization at higher or more prolonged stays at altitude.
Asunto(s)
Aclimatación/fisiología , Equilibrio Ácido-Base , Altitud , Bicarbonatos/metabolismo , Hipocapnia/metabolismo , Hipoxia/metabolismo , Adulto , Humanos , MasculinoRESUMEN
Measurements of central and peripheral respiratory chemoreflexes are important in the context of high altitude as indices of ventilatory acclimatization. However, respiratory chemoreflex tests have many caveats in the field, including considerations of safety, portability and consistency. This overview will (a) outline commonly utilized tests of the hypoxic ventilatory response (HVR) in humans, (b) outline the caveats associated with a variety of peak response HVR tests in the laboratory and in high altitude fieldwork contexts, and (c) advance a novel index of steady-state chemoreflex drive (SS-CD) that addresses the many limitations of other chemoreflex tests. The SS-CD takes into account the contribution of central and peripheral respiratory chemoreceptors, and eliminates the need for complex equipment and transient respiratory gas perturbation tests. To quantify the SS-CD, steady-state measurements of the pressure of end-tidal (PET)CO2 (Torr) and peripheral oxygen saturation (SpO2; %) are used to quantify a stimulus index (SI; PETCO2/SpO2). The SS-CD is then calculated by indexing resting ventilation (L/min) against the SI. SS-CD data are subsequently reported from 13 participants during incremental ascent to high altitude (5160 m) in the Nepal Himalaya. The mean SS-CD magnitude increased approximately 96% over 10 days of incremental exposure to hypobaric hypoxia, suggesting that the SS-CD tracks ventilatory acclimatization. This novel SS-CD may have future utility in fieldwork studies assessing ventilatory acclimatization during incremental or prolonged stays at altitude, and may replace the use of complex and potentially confounded transient peak response tests of the HVR in humans.
Asunto(s)
Aclimatación , Altitud , Hipoxia , Oxígeno , Respiración , Dióxido de Carbono , Humanos , NepalRESUMEN
Ventilatory acclimatization (VA) is important to maintain adequate oxygenation with ascent to high altitude (HA). Transient hypoxic ventilatory response tests lack feasibility and fail to capture the integrated steady-state responses to chronic hypoxic exposure in HA fieldwork. We recently characterized a novel index of steady-state respiratory chemoreflex drive (SSCD), accounting for integrated contributions from central and peripheral respiratory chemoreceptors during steady-state breathing at prevailing chemostimuli. Acetazolamide is often utilized during ascent for prevention or treatment of altitude-related illnesses, eliciting metabolic acidosis and stimulating respiratory chemoreceptors. To determine if SSCD reflects VA during ascent to HA, we characterized SSCD in 25 lowlanders during incremental ascent to 4240 m over 7 days. We subsequently compared two separate subgroups: no acetazolamide (NAz; n = 14) and those taking an oral prophylactic dose of acetazolamide (Az; 125 mg BID; n = 11). At 1130/1400 m (day zero) and 4240 m (day seven), steady-state measurements of resting ventilation (VÌI ; L/min), pressure of end-tidal (PET )CO2 (Torr), and peripheral oxygen saturation (SpO2 ; %) were measured. A stimulus index (SI; PET CO2 /SpO2 ) was calculated, and SSCD was calculated by indexing VÌI against SI. We found that (a) both VÌI and SSCD increased with ascent to 4240 m (day seven; VÌI : +39%, p < 0.0001, Hedges' g = 1.52; SSCD: +56.%, p < 0.0001, Hedges' g = 1.65), (b) and these responses were larger in the Az versus NAz subgroup (VÌI : p = 0.02, Hedges' g = 1.04; SSCD: p = 0.02, Hedges' g = 1.05). The SSCD metric may have utility in assessing VA during prolonged stays at altitude, providing a feasible alternative to transient chemoreflex tests.
Asunto(s)
Acetazolamida , Mal de Altura , Humanos , Acetazolamida/farmacología , Altitud , Dióxido de Carbono , AclimataciónRESUMEN
Central sleep apnea (CSA) is characterized by periodic breathing (PB) during sleep, defined as intermittent periods of apnea/hypopnea and hyperventilation, with associated acute fluctuations in oxyhemoglobin saturation (SO2). CSA has an incidence of â¼50% in heart failure patients but is universal at high altitude (HA; ≥2,500 m), increasing in severity with further ascent and/or time at altitude. However, whether PB is adaptive, maladaptive, or neutral with respect to sleeping SO2 at altitude is unclear. We hypothesized that PB severity would improve mean sleeping SO2 during acclimatization to HA due to relative, intermittent hyperventilation subsequent to each apnea. We utilized portable sleep monitors to assess the incidence and severity of CSA via apnea-hypopnea index (AHI) and oxygen desaturation index (ODI), and peripheral oxygen saturation ([Formula: see text]) during sleep during two ascent profiles to HA in native lowlanders: 1) rapid ascent to and residence at 3,800 m for 9 days/nights (n = 21) and 2) incremental ascent to 5,160 m over 10 days/nights (n = 21). In both ascent models, severity of AHI and ODI increased and mean sleeping [Formula: see text] decreased, as expected. However, during sleep on the last night/highest altitude of both ascent profiles, neither AHI nor ODI were correlated with mean sleeping [Formula: see text]. In addition, mean sleeping [Formula: see text] was not significantly different between high and low CSA. These data suggest that CSA is neither adaptive nor maladaptive with regard to mean oxygen saturation during sleep, owing to the relative hyperventilation between apneas, likely correcting transient apnea-mediated oxygen desaturation and maintaining mean oxygenation.NEW & NOTEWORTHY Central sleep apnea (CSA) is universal during ascent to high altitude, with intermittent and transient fluctuations in oxygen saturation, but the consequences on mean sleeping blood oxygenation are unclear. We assessed indices of CSA and mean sleeping peripheral oxygen saturation ([Formula: see text]) during ascent to high altitude using two ascent profiles: rapid ascent and residence at 3,800 m and incremental ascent to 5,160 m. The severity of CSA was not correlated with mean sleeping [Formula: see text] with ascent.
Asunto(s)
Apnea Central del Sueño , Altitud , Humanos , Oxígeno , SueñoRESUMEN
Sonographic B-lines can indicate pulmonary interstitial edema. We sought to determine the incidence of subclinical pulmonary edema measured by sonographic B-lines among lowland trekkers ascending to high altitude in the Nepal Himalaya. Twenty healthy trekkers underwent portable sonographic examinations and arterial blood draws during ascent to 5160 m over ten days. B-lines were identified in twelve participants and more frequent at 4240 m and 5160 m compared to lower altitudes (P < 0.03). There was a strong negative correlation between arterial oxygen saturation and the number of B-lines at 5160 m (ρ = -0.75, P = 0.008). Our study contributes to the growing body of literature demonstrating the development of asymptomatic pulmonary edema during ascent to high altitude. Portable lung sonography may have utility in fieldwork contexts such as trekking at altitude, but further research is needed in order to clarify its potential clinical applicability.
Asunto(s)
Altitud , Pulmón/diagnóstico por imagen , Montañismo/fisiología , Edema Pulmonar/diagnóstico por imagen , Ultrasonografía , Adulto , Estudios de Factibilidad , Femenino , Humanos , Masculino , Nepal , Estudios Prospectivos , Edema Pulmonar/sangre , Edema Pulmonar/fisiopatología , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Ultrasonografía/normas , Adulto JovenRESUMEN
Swallow and breathing are highly coordinated behaviors reliant on shared anatomical space and neural pathways. Incremental ascent to high altitudes results in hypoxia/hypocapnic conditions altering respiratory drive, however it is not known whether these changes also alter swallow. We examined the effect of incremental ascent (1045â¯m, 3440â¯m and 4371â¯m) on swallow motor pattern and swallow-breathing coordination in seven healthy adults. Submental surface electromyograms (sEMG) and spirometry were used to evaluate swallow triggered by saliva and water infusion. Swallow-breathing phase preference was different between swallows initiated by saliva versus water. With ascent, saliva swallows changed to a dominate pattern of occurrence during the transition from inspiration to expiration. Additionally, water swallows demonstrated a significant decrease in submental sEMG duration and a shift in submental activity to earlier in the apnea period, especially at 4371â¯m. Our results suggest that there are changes in swallow-breathing coordination and swallow production that likely increase airway protection with incremental ascent to high altitude. The adaptive changes in swallow were likely due to the exposure to hypoxia and hypocapnia, along with airway irritation.
Asunto(s)
Adaptación Fisiológica/fisiología , Altitud , Deglución/fisiología , Hipocapnia/fisiopatología , Hipoxia/fisiopatología , Mecánica Respiratoria/fisiología , Frecuencia Respiratoria/fisiología , Adulto , Ingestión de Líquidos , Electromiografía , Humanos , Saliva , EspirometríaRESUMEN
Neurovascular coupling (NVC) is the temporal link between neuronal metabolic activity and regional cerebral blood flow (CBF), supporting adequate delivery of nutrients. Exposure to high altitude (HA) imposes several stressors, including hypoxia and hypocapnia, which modulate cerebrovascular tone in an antagonistic fashion. Whether these contrasting stressors and subsequent adaptations affect NVC during incremental ascent to HA is unclear. The aim of this study was to assess whether incremental ascent to HA influences the NVC response. Given that CBF is sensitive to changes in arterial blood gasses, in particular PaCO2, we hypothesized that the vasoconstrictive effect of hypocapnia during ascent would decrease the NVC response. 10 healthy study participants (21.7 ± 1.3 years, 23.57 ± 2.00 kg/m2, mean ± SD) were recruited as part of a research expedition to HA in the Nepal Himalaya. Resting posterior cerebral artery velocity (PCAv), arterial blood gasses (PaO2, SaO2, PaCO2, [HCO3 -], base excess and arterial blood pH) and NVC response of the PCA were measured at four pre-determined locations: Calgary/Kathmandu (1045/1400 m, control), Namche (3440 m), Deboche (3820 m) and Pheriche (4240 m). PCAv was measured using transcranial Doppler ultrasound. Arterial blood draws were taken from the radial artery and analyzed using a portable blood gas/electrolyte analyzer. NVC was determined in response to visual stimulation (VS; Strobe light; 6 Hz; 30 s on/off × 3 trials). The NVC response was averaged across three VS trials at each location. PaO2, SaO2, and PaCO2 were each significantly decreased at 3440, 3820, and 4240 m. No significant differences were found for pH at HA (P > 0.05) due to significant reductions in [HCO3 -] (P < 0.043). As expected, incremental ascent to HA induced a state of hypoxic hypocapnia, whereas normal arterial pH was maintained due to renal compensation. NVC was quantified as the delta (Δ) PCAv from baseline for mean PCAv, peak PCAv and total area under the curve (ΔPCAv tAUC) during VS. No significant differences were found for Δmean, Δpeak or ΔPCAv tAUC between locations (P > 0.05). NVC remains remarkably intact during incremental ascent to HA in healthy acclimatized individuals. Despite the array of superimposed stressors associated with ascent to HA, CBF and NVC regulation may be preserved coincident with arterial pH maintenance during acclimatization.
RESUMEN
High-altitude natives employ numerous physiological strategies to survive and reproduce. However, the concomitant influence of altitude and physical activity during pregnancy has not been studied above 3,700 m. We report a case of physical activity, sleep behavior, and physiological measurements on a 28-yr-old third-trimester pregnant native highlander (Sherpa) during ascent from 3,440 m to Everest Base Camp (~5,300 m) over 8 days in the Nepal Himalaya and again ~10 mo postpartum during a similar ascent profile. The participant engaged in 250-300 min of moderate to vigorous physical activity per day during ascent to altitude while pregnant, with similar volumes of moderate to vigorous physical activity while postpartum. There were no apparent maternal, fetal, or neonatal complications related to the superimposition of the large volumes of physical activity at altitude. This report demonstrates a rare description of physical activity and ascent to high altitude during pregnancy and points to novel questions regarding the superimposition of pregnancy, altitude, and physical activity in high-altitude natives.