Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell Mol Life Sci ; 81(1): 384, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235466

RESUMEN

Bioenergy decline occurs with reperfusion following acute ischemic stroke. However, the molecular mechanisms that limit energy metabolism and their impact on post-stroke cognitive and emotional complications are still unclear. In the present study, we demonstrate that the p53 transcriptional response is responsible for neuronal adenosine triphosphate (ATP) deficiency and progressively neuropsychiatric disturbances, involving the downregulation of mitochondrial voltage-dependent anion channels (VDACs). Neuronal p53 transactivated the promoter of microRNA-183 (miR-183) cluster, thereby upregulating biogenesis of miR-183-5p (miR-183), miR-96-5p (miR-96), and miR-182-5p. Both miR-183 and miR-96 directly targeted and post-transcriptionally suppressed VDACs. Neuronal ablation of p53 protected against ATP deficiency and neurological deficits, whereas post-stroke rescue of miR-183/VDAC signaling reversed these benefits. Interestingly, cyclin-dependent kinase 9 (CDK9) was found to be enriched in cortical neurons and upregulated the p53-induced transcription of the miR-183 cluster in neurons after ischemia. Post-treatment with the CDK9 inhibitor oroxylin A promoted neuronal ATP production mainly through suppressing the miR-183 cluster/VDAC axis, further improved long-term sensorimotor abilities and spatial memory, and alleviated depressive-like behaviors in mice following stroke. Our findings reveal an intrinsic CDK9/p53/VDAC pathway that drives neuronal bioenergy decline and underlies post-stroke cognitive impairment and depression, thus highlighting the therapeutic potential of oroxylin A for better outcomes.


Asunto(s)
Metabolismo Energético , Ratones Endogámicos C57BL , MicroARNs , Neuronas , Transducción de Señal , Accidente Cerebrovascular , Proteína p53 Supresora de Tumor , Animales , Masculino , Ratones , Adenosina Trifosfato/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/complicaciones , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
2.
Cell Death Differ ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341961

RESUMEN

Lysosomes regulate cellular metabolism to maintain cell survival, but the mechanisms whereby they determine neuronal cell fate after acute metabolic stress are unknown. Neuron-enriched lysosomal membrane protein LAMP2A is involved in selective chaperone-mediated autophagy and exosome loading. This study demonstrates that abnormalities in the neuronal LAMP2A-lysosomal pathway cause neurological deficits following ischemic stroke and that this is an early inducer of the PANoptosis-like molecular pathway and neuroinflammation, simultaneously inducing upregulation of FADD, RIPK3, and MLKL after ischemia. Quantitative proteomic and pharmacological analysis showed that after acute metabolic stress, the neuronal LAMP2A pathway induced acute synaptic degeneration and PANoptosis-like responses involving downregulation of protein kinase A (PKA) signaling. LAMP2A directed post-stroke lysosomal degradation of adenylyl cyclases (ADCY), including ADCY1 and ADCY3 in cortical neurons. Post-stroke treatment with cAMP mimetic or ADCY activator salvaged cortical neurons from PANoptosis-like responses and neuroinflammation, suggesting that the neuronal ADCY-cAMP-PKA axis is an upstream arrester of the pathophysiological process following an ischemic stroke. This study demonstrates that the neuronal LAMP2A-lysosmal pathway drives intricate acute neurodegenerative and neuroinflammatory responses after brain metabolic stress by downregulating the ADCY-PKA signaling cascade, and highlights the therapeutic potential of PKA signal inducers for improving stroke outcomes.

3.
Med Oncol ; 40(1): 44, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481875

RESUMEN

Glycogen Synthase Kinase-3 (GSK-3) was recently implicated in the dysregulated biology of acute myeloid leukemia (AML). Low concentrations of GSK-3 inhibitors, SB216763 and BIO, suppressed the proliferation of AML cells with FLT3-ITD as early as 24 h after treatment. BIO was used in subsequent assays since it exhibited higher inhibitory effects than SB216763. BIO-induced G1 cell cycle arrest by regulating the expression of cyclin D2 and p21 in MV4-11 cells, and promoted apoptosis by regulating the cleaved-caspase3 signaling pathways. In vivo assays demonstrated that BIO suppressed tumor growth, while metabolomics assay showed that BIO reduced the levels of ATP and pyruvate in MV4-11 cells suggesting that it inhibited glycolysis. BIO markedly suppressed cell growth and induced apoptosis of AML cells with FLT3-ITD by partially inhibiting glycolysis, suggesting that BIO may be a promising therapeutic candidate for AML.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Leucemia , Humanos , Proliferación Celular , Tirosina Quinasa 3 Similar a fms/genética , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Metabolómica , Línea Celular Tumoral , Puntos de Control del Ciclo Celular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda