Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
Sheng Li Xue Bao ; 74(2): 145-154, 2022 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-35503062

RESUMEN

The aim of this study was to investigate the harmful effects of acute hypoxia on mouse cerebral cortex and hippocampus and the underlying mechanism. Mouse model of acute hypoxia was constructed by using a sealed glass jar. Laser speckle contrast imaging was used to detect the changes of cerebral blood flow after different time duration of hypoxia. Total superoxide dismutase (T-SOD) and malondialdehyde (MDA) assay kits were used to detect oxidative stress in cerebral cortex and hippocampus. Immunofluorescent staining was used to detect neuroinflammatory response of microglia in the cerebral cortex and hippocampus. One-step TUNEL method was used to detect neuronal apoptosis. The results showed that, compared with non-hypoxia (0 min hypoxia) group, 30 min hypoxia group exhibited decreased cerebral blood flow, higher percentage of CD68+/Iba1+ microglia, and increased neural apoptosis in the cerebral cortex and hippocampus. Compared with 30 min group, 60 min hypoxia group showed significantly decreased cerebral blood flow, increased MDA content in the cortex, as well as greater percentage of CD68+/Iba1+ microglia and neuronal apoptosis in the cerebral cortex and hippocampus. These results suggest that acute hypoxia damages brain tissue in a time-dependent manner and the oxidative stress and neuroinflammation are important mechanisms.


Asunto(s)
Hipocampo , Hipoxia , Animales , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Malondialdehído , Ratones , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología
2.
Neuroscience ; 438: 9-24, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353462

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) is a regulator of axon growth and radial neuronal migration in the developing mouse brain, and it plays critical roles in cortical structure formation and brain function. However, the function of Cdk5 in cortico-cortical and cortico-sensorimotor networks in the adult remains largely unknown. In this study, we investigated the function of Cdk5 in the rostral secondary motor cortex (M2) in the male mouse using CRISPR/Cas9 gene editing and somatic brain transgenesis, to produce M2-specific knockdown of Cdk5 in neurons in the male mouse. Mouse deficient in Cdk5 in the M2 exhibited a reduction in both the number of functional synapses and the total basal dendritic length, as well as motor dysfunction. Furthermore, whole-cell patch-clamp recordings in layer V green fluorescent protein (GFP)-tag pyramidal neurons revealed a decrease in the frequency and amplitude of miniature EPSCs and miniature IPSCs, as well as a reduction in the population synaptic responses (fEPSPs) in these mice. Specifically, retrograde labeling showed that Cdk5 knockdown in the M2 caused a reduction in long-range projections to the M2 from the thalamus/prefrontal cortex and claustrum. Collectively, our findings show a new regulatory role of Cdk5 in neural circuit maintenance, and that the changes in neural transmission and circuits in the mice with Cdk5 knockdown in the M2 likely contribute to the motor dysfunction in these animals.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Corteza Motora , Animales , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Masculino , Ratones , Corteza Motora/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda