Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37448012

RESUMEN

Accurate prediction of machine RUL plays a crucial role in reducing human casualties and economic losses, which is of significance. The ability to handle spatiotemporal information contributes to improving the prediction performance of machine RUL. However, most existing models for spatiotemporal information processing are not only complex in structure but also lack adaptive feature extraction capabilities. Therefore, a lightweight operator with adaptive spatiotemporal information extraction ability named Involution GRU (Inv-GRU) is proposed for aero-engine RUL prediction. Involution, the adaptive feature extraction operator, is replaced by the information connection in the gated recurrent unit to achieve adaptively spatiotemporal information extraction and reduce the parameters. Thus, Inv-GRU can well extract the degradation information of the aero-engine. Then, for the RUL prediction task, the Inv-GRU-based deep learning (DL) framework is firstly constructed, where features extracted by Inv-GRU and several human-made features are separately processed to generate health indicators (HIs) from multi-raw data of aero-engines. Finally, fully connected layers are adopted to reduce the dimension and regress RUL based on the generated HIs. By applying the Inv-GRU-based DL framework to the Commercial Modular Aero Propulsion System Simulation (C-MAPSS) datasets, successful predictions of aero-engines RUL have been achieved. Quantitative comparative experiments have demonstrated the advantage of the proposed method over other approaches in terms of both RUL prediction accuracy and computational burden.


Asunto(s)
Cognición , Almacenamiento y Recuperación de la Información , Humanos , Simulación por Computador
2.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631658

RESUMEN

This paper proposes a vehicle-parking trajectory planning method that addresses the issues of a long trajectory planning time and difficult training convergence during automatic parking. The process involves two stages: finding a parking space and parking planning. The first stage uses model predictive control (MPC) for trajectory tracking from the initial position of the vehicle to the starting point of the parking operation. The second stage employs the proximal policy optimization (PPO) algorithm to transform the parking behavior into a reinforcement learning process. A four-dimensional reward function is set to evaluate the strategy based on a formal reward, guiding the adjustment of neural network parameters and reducing the exploration of invalid actions. Finally, a simulation environment is built for the parking scene, and a network framework is designed. The proposed method is compared with the deep deterministic policy gradient and double-delay deep deterministic policy gradient algorithms in the same scene. Results confirm that the MPC controller accurately performs trajectory-tracking control with minimal steering wheel angle changes and smooth, continuous movement. The PPO-based reinforcement learning method achieves shorter learning times, totaling only 30% and 37.5% of the deep deterministic policy gradient (DDPG) and twin-delayed deep deterministic policy gradient (TD3), and the number of iterations to reach convergence for the PPO algorithm with the introduction of the four-dimensional evaluation metrics is 75% and 68% shorter compared to the DDPG and TD3 algorithms, respectively. This study demonstrates the effectiveness of the proposed method in addressing a slow convergence and long training times in parking trajectory planning, improving parking timeliness.

3.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571706

RESUMEN

Multitarget tracking based on multisensor fusion perception is one of the key technologies to realize the intelligent driving of automobiles and has become a research hotspot in the field of intelligent driving. However, most current autonomous-vehicle target-tracking methods based on the fusion of millimeter-wave radar and lidar information struggle to guarantee accuracy and reliability in the measured data, and cannot effectively solve the multitarget-tracking problem in complex scenes. In view of this, based on the distributed multisensor multitarget tracking (DMMT) system, this paper proposes a multitarget-tracking method for autonomous vehicles that comprehensively considers key technologies such as target tracking, sensor registration, track association, and data fusion based on millimeter-wave radar and lidar. First, a single-sensor multitarget-tracking method suitable for millimeter-wave radar and lidar is proposed to form the respective target tracks; second, the Kalman filter temporal registration method and the residual bias estimation spatial registration method are used to realize the temporal and spatial registration of millimeter-wave radar and lidar data; third, use the sequential m-best method based on the new target density to find the track the correlation of different sensors; and finally, the IF heterogeneous sensor fusion algorithm is used to optimally combine the track information provided by millimeter-wave radar and lidar, and finally form a stable and high-precision global track. In order to verify the proposed method, a multitarget-tracking simulation verification in a high-speed scene is carried out. The results show that the multitarget-tracking method proposed in this paper can realize the track tracking of multiple target vehicles in high-speed driving scenarios. Compared with a single-radar tracker, the position, velocity, size, and direction estimation errors of the track fusion tracker are reduced by 85.5%, 64.6%, 75.3%, and 9.5% respectively, and the average value of GOSPA indicators is reduced by 19.8%; more accurate target state information can be obtained than a single-radar tracker.

4.
Phys Rev Lett ; 119(7): 075301, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949693

RESUMEN

We derive the phonon dynamics of magnetic metals in the presence of strong spin-orbit coupling. We show that both a dissipationless viscosity and a dissipative viscosity arise in the dynamics. While the dissipationless viscosity splits the dispersion of left-handed and right-handed circularly polarized phonons, the dissipative viscosity damps them differently, inducing circular phonon dichroism. The effect offers a new degree of manipulation of phonons, i.e., the control of the phonon polarization. We investigate the effect in Weyl semimetals. We find that there exists strong circular phonon dichroism in Weyl semimetals breaking both the time-reversal and the inversion symmetry, making them potential materials for realizing the acoustic circular polarizer.

5.
Proc Natl Acad Sci U S A ; 110(10): 3738-42, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23435746

RESUMEN

Conventional electronics are based invariably on the intrinsic degrees of freedom of an electron, namely its charge and spin. The exploration of novel electronic degrees of freedom has important implications in both basic quantum physics and advanced information technology. Valley, as a new electronic degree of freedom, has received considerable attention in recent years. In this paper, we develop the theory of spin and valley physics of an antiferromagnetic honeycomb lattice. We show that by coupling the valley degree of freedom to antiferromagnetic order, there is an emergent electronic degree of freedom characterized by the product of spin and valley indices, which leads to spin-valley-dependent optical selection rule and Berry curvature-induced topological quantum transport. These properties will enable optical polarization in the spin-valley space, and electrical detection/manipulation through the induced spin, valley, and charge fluxes. The domain walls of an antiferromagnetic honeycomb lattice harbors valley-protected edge states that support spin-dependent transport. Finally, we use first-principles calculations to show that the proposed optoelectronic properties may be realized in antiferromagnetic manganese chalcogenophosphates (MnPX3, X = S, Se) in monolayer form.

6.
Nat Mater ; 13(2): 184-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24390380

RESUMEN

Water/solid interfaces are vital to our daily lives and are also a central theme across an incredibly wide range of scientific disciplines. Resolving the internal structure, that is, the O-H directionality, of water molecules adsorbed on solid surfaces has been one of the key issues of water science yet it remains challenging. Using a low-temperature scanning tunnelling microscope, we report submolecular-resolution imaging of individual water monomers and tetramers on NaCl(001) films supported by a Au(111) substrate at 5 K. The frontier molecular orbitals of adsorbed water were directly visualized, which allowed discrimination of the orientation of the monomers and the hydrogen-bond directionality of the tetramers in real space. Comparison with ab initio density functional theory calculations reveals that the ability to access the orbital structures of water stems from the electronic decoupling effect provided by the NaCl films and the precisely tunable tip-water coupling.

7.
Phys Rev Lett ; 113(1): 016801, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-25032931

RESUMEN

We show that a weak hexagonal periodic potential can transform a two-dimensional electron gas with an even-denominator magnetic filling factor into an quantum anomalous hall insulator of composite fermions, giving rise to the fractionally quantized Hall effect. The system provides a realization of the Haldane honeycomb-net model, albeit in a composite fermion system. We further propose a trial wave function for the state, and numerically evaluate its relative stability against the competing Hofstadter state. Possible sets of experimental parameters are proposed.

9.
Phys Rev Lett ; 109(11): 116803, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23005663

RESUMEN

We study the possibility of realizing topological phases in graphene with randomly distributed adsorbates. When graphene is subjected to periodically distributed adatoms, the enhanced spin-orbit couplings can result in various topological phases. However, at certain adatom coverages, the intervalley scattering renders the system a trivial insulator. By employing a finite-size scaling approach and Landauer-Büttiker formula, we show that the randomization of adatom distribution greatly weakens the intervalley scattering, but plays a negligible role in spin-orbit couplings. Consequently, such a randomization turns graphene from a trivial insulator into a topological state.

10.
Sci Rep ; 12(1): 21575, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517542

RESUMEN

In order to meet the personalized needs of Chinese intelligent vehicles and improve the satisfaction and acceptance of human-computer interaction and collaboration in domestic intelligent vehicles. In this paper, we design an adaptive longitudinal following model that integrates the perceptual perturbation process and driver characteristics for simulating driver following behavior and studying the variability of driver following behavior. Firstly, for the independence and randomness of driver perception process, a set of random variables conforming to Wiener process is introduced to simulate the perception process of speed and following distance of the vehicle in front; secondly, for the characteristic differences of different drivers' following behavior, a driver characteristic parameter identification algorithm is designed to identify the expected collision time distance and following distance parameters of different drivers, and the identified parameters will be used for Again, a sliding mode control system based on fuzzy switching gain adjustment is designed to simulate the driver following control system. The results show that the designed following model recognizes the driver's characteristics well and can better simulate the driver's following behavior, and the following index is relatively improved by 80%.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Algoritmos , Percepción
11.
Phys Rev Lett ; 106(15): 157003, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21568604

RESUMEN

We show that a chiral (f+if)-wave superconducting pairing may be induced in the lowest heavy hole band of a hole-doped semiconductor thin film through proximity contact with an s-wave superconductor. The chirality of the pairing originates from the 3π Berry phase accumulated for a heavy hole moving along a close path on the Fermi surface. There exist three chiral gapless Majorana edge states, in consistence with the chiral (f+if)-wave pairing. We show the existence of zero-energy Majorana fermions in vortices in the semiconductor-superconductor heterostructure by solving the Bogoliubov-de Gennes equations numerically as well as analytically in the strong confinement limit.

12.
Phys Rev Lett ; 107(7): 076801, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21902413

RESUMEN

A magnetoconductivity formula is presented for the surface states of a magnetically doped topological insulator. It reveals a competing effect of weak localization and weak antilocalization in quantum transport when an energy gap is opened at the Dirac point by magnetic doping. It is found that, while random magnetic scattering always drives the system from the symplectic to the unitary class, the gap could induce a crossover from weak antilocalization to weak localization, tunable by the Fermi energy or the gap. This crossover presents a unique feature characterizing the surface states of a topological insulator with the gap opened at the Dirac point in the quantum diffusion regime.

13.
Phys Rev Lett ; 107(23): 236601, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22182111

RESUMEN

We obtain a set of general formulas for determining magnetizations, including the usual electromagnetic magnetization as well as the gravitomagnetic energy magnetization. The magnetization corrections to the thermal transport coefficients are explicitly demonstrated. Our theory provides a systematic approach for properly evaluating the thermal transport coefficients of magnetic systems, eliminating the unphysical divergence from the direct application of the Kubo formula. For a noninteracting anomalous Hall system, the corrected thermal Hall conductivity obeys the Wiedemann-Franz law.

14.
Phys Rev Lett ; 105(25): 256402, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21231605

RESUMEN

High-resolution electron energy loss spectroscopy measurements have been carried out on an optimally doped cuprate Bi(2)Sr(2)CaCu(2)O(8+δ). The momentum-dependent energy and linewidth of an A1 optical phonon were obtained. Based on these data as well as detailed knowledge of the electronic structure, we developed a scheme to determine the electron-phonon coupling (EPC) matrix element related to a specific phonon mode. Such an approach is general and applicable to elucidating the full structure of EPC in a system with anisotropic electronic structure.

15.
Nat Commun ; 7: 13013, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721372

RESUMEN

Discovery of Weyl semimetals has revived interest in Weyl fermions which has not been observed in high energy experiments. It now becomes possible to study, in solids, their exotic properties. Extensive photoemission spectroscopy and electrical resistivity experiments have been carried out. However, many other properties remain unexplored. Here we show the thermoelectric signature of the chiral anomaly of Weyl fermions in Cd3As2 under a magnetic field. We observe a strong quadratic suppression of the thermopower when the magnetic field is parallel to the temperature gradient. The quadratic coefficient is nearly twice of that for the electrical conductivity. The thermopower reverses its sign in high fields. We show that all these intriguing observations can be understood in terms of the chiral anomaly of Weyl fermions. Our results reveal the anomalous thermoelectric property of Weyl fermions and provide insight into the chiral anomaly.

16.
Nat Commun ; 3: 887, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22673914

RESUMEN

A two-dimensional honeycomb lattice harbours a pair of inequivalent valleys in the k-space electronic structure, in the vicinities of the vertices of a hexagonal Brillouin zone, K(±). It is particularly appealing to exploit this emergent degree of freedom of charge carriers, in what is termed 'valleytronics'. The physics of valleys mimics that of spin, and will make possible devices, analogous to spintronics, such as valley filter and valve, and optoelectronic Hall devices, all very promising for next-generation electronics. The key challenge lies with achieving valley polarization, of which a convincing demonstration in a two-dimensional honeycomb structure remains evasive. Here we show, using first principles calculations, that monolayer molybdenum disulphide is an ideal material for valleytronics, for which valley polarization is achievable via valley-selective circular dichroism arising from its unique symmetry. We also provide experimental evidence by measuring the circularly polarized photoluminescence on monolayer molybdenum disulphide, which shows up to 50% polarization.


Asunto(s)
Dicroismo Circular/métodos , Disulfuros/química , Molibdeno/química
17.
Phys Rev Lett ; 102(8): 087602, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19257787

RESUMEN

We develop a general theory of electric polarization in crystals with inhomogeneous order. We show that the inhomogeneity-induced polarization can be classified into two parts: a perturbative contribution stemming from a correction to the basis functions and a topological contribution described in terms of the Chern-Simons form of the Berry gauge fields. The latter is determined up to an uncertainty quantum, which is the second Chern number in appropriate units. Our theory provides an exhaustive link between microscopic models and the macroscopic polarization.

18.
Phys Rev Lett ; 101(6): 067001, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18764492

RESUMEN

We have measured the normal state temperature dependence of the Hall effect and magnetoresistance in epitaxial MgB2 thin films with variable disorders characterized by the residual resistance ratio RRR ranging from 4.0 to 33.3. A strong nonlinearity of the Hall effect and magnetoresistance have been found in clean samples, and they decrease gradually with the increase of disorders or temperature. By fitting the data to the theoretical model based on the Boltzmann equation and ab initio calculations for a four-band system, for the first time, we derived the scattering rates of these four bands at different temperatures and magnitude of disorders. Our method provides a unique way to derive these important parameters in multiband systems.

19.
Phys Rev Lett ; 99(19): 197202, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-18233109

RESUMEN

Based on standard perturbation theory, we present a full quantum derivation of the formula for the orbital magnetization in periodic systems. The derivation is generally valid for insulators with or without a Chern number, for metals at zero or finite temperatures, and at weak as well as strong magnetic fields. The formula is shown to be valid in the presence of electron-electron interaction, provided the one-electron energies and wave functions are calculated self-consistently within the framework of the exact current and spin-density functional theory.

20.
Phys Rev Lett ; 96(7): 076604, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16606119

RESUMEN

The conventional definition of spin current is incomplete and unphysical in describing spin transport in systems with spin-orbit coupling. A proper and measurable spin current is established in this study, which fits well into the standard framework of near-equilibrium transport theory and has the desirable property to vanish in insulators with localized orbitals. Experimental implications of our theory are discussed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda