Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mol Cell ; 82(20): 3810-3825.e8, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36108631

RESUMEN

Human mixed-lineage leukemia (MLL) family methyltransferases methylate histone H3 lysine 4 to different methylation states (me1/me2/me3) with distinct functional outputs, but the mechanism underlying the different product specificities of MLL proteins remains unclear. Here, we develop methodologies to quantitatively measure the methylation rate difference between mono-, di-, and tri-methylation steps and demonstrate that MLL proteins possess distinct product specificities in the context of the minimum MLL-RBBP5-ASH2L complex. Comparative structural analyses of MLL complexes by X-ray crystal structures, fluorine-19 nuclear magnetic resonance, and molecular dynamics simulations reveal that the dynamics of two conserved tyrosine residues at the "F/Y (phenylalanine/tyrosine) switch" positions fine-tune the product specificity. The variation in the intramolecular interaction between SET-N and SET-C affects the F/Y switch dynamics, thus determining the product specificities of MLL proteins. These results indicate a modified F/Y switch rule applicable for most SET domain methyltransferases and implicate the functional divergence of MLL proteins.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia , Humanos , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Lisina/metabolismo , Flúor/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Tirosina , Fenilalanina
2.
J Virol ; 98(2): e0195423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289102

RESUMEN

During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Humanos , Mamíferos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/genética , ARN Viral/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , ARN Subgenómico , Proteínas Virales/metabolismo , Replicación Viral , Virus Zika/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
3.
J Biomed Sci ; 31(1): 60, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849802

RESUMEN

BACKGROUND: Flavivirus is a challenge all over the world. The replication of flavivirus takes place within membranous replication compartments (RCs) derived from endoplasmic reticulum (ER). Flavivirus NS1 proteins have been proven essential for the formation of viral RCs by remodeling the ER. The glycosylation of flavivirus NS1 proteins is important for viral replication, yet the underlying mechanism remains unclear. METHODS: HeLa cells were used to visualize the ER remodeling effects induced by NS1 expression. ZIKV replicon luciferase assay was performed with BHK-21 cells. rZIKV was generated from BHK-21 cells and the plaque assay was done with Vero Cells. Liposome co-floating assay was performed with purified NS1 proteins from 293T cells. RESULTS: We found that the glycosylation of flavivirus NS1 contributes to its ER remodeling activity. Glycosylation deficiency of NS1, either through N-glycosylation sites mutations or tunicamycin treatment, compromises its ER remodeling activity and interferes with viral RCs formation. Disruption of NS1 glycosylation results in abnormal aggregation of NS1, rather than reducing its membrane-binding activity. Consequently, deficiency in NS1 glycosylation impairs virus replication. CONCLUSIONS: In summary, our results highlight the significance of NS1 glycosylation in flavivirus replication and elucidate the underlying mechanism. This provides a new strategy for combating flavivirus infections.


Asunto(s)
Proteínas no Estructurales Virales , Replicación Viral , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Glicosilación , Humanos , Animales , Compartimentos de Replicación Viral/metabolismo , Células HeLa , Chlorocebus aethiops , Flavivirus/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Células Vero
4.
Protein Expr Purif ; 219: 106461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38460621

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy NMR is a well-established technique for probing protein structure, dynamics and conformational changes. Taking advantage of the high signal sensitivity and broad chemical shift range of 19F nuclei, 19F NMR has been applied to investigate protein function at atomic resolution. In this report, we extend the unnatural amino acid site-specific incorporation into V. natriegens, an alternate protein expression system. The unnatural amino acid L-4-trifluoromethylphenylalanine (tfmF) was site-specifically introduced into the mitogen-activated protein kinase MEKK3 in V. natriegens using genetically encoded technology, which will be an extensive method for in-cell protein structure and dynamic investigation.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/genética , Flúor/química , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo
5.
Acta Pharmacol Sin ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926478

RESUMEN

Somatostatin receptor 5 (SSTR5) is highly expressed in ACTH-secreting pituitary adenomas and is an important drug target for the treatment of Cushing's disease. Two cyclic SST analog peptides (pasireotide and octreotide) both can activate SSTR5 and SSTR2. Pasireotide is preferential binding to SSTR5 than octreotide, while octreotide is biased to SSTR2 than SSTR5. The lack of selectivity of both pasireotide and octreotide causes side effects, such as hyperglycemia, gastrointestinal disturbance, and abnormal glucose homeostasis. However, little is known about the binding and selectivity mechanisms of pasireotide and octreotide with SSTR5, limiting the development of subtype-selective SST analog drugs specifically targeting SSTR5. Here, we report two cryo-electron microscopy (cryo-EM) structures of SSTR5-Gi complexes activated by pasireotide and octreoitde at resolutions of 3.09 Å and 3.24 Å, respectively. In combination with structural analysis and functional experiments, our results reveal the molecular mechanisms of ligand recognition and receptor activation. We also demonstrate that pasireotide preferentially binds to SSTR5 through the interactions between Tyr(Bzl)/DTrp of pasireotide and SSTR5. Moreover, we find that the Q2.63, N6.55, F7.35 and ECL2 of SSTR2 play a crucial role in octreotide biased binding of SSTR2. Our results will provide structural insights and offer new opportunities for the drug discovery of better selective pharmaceuticals targeting specific SSTR subtypes.

6.
J Med Virol ; 95(12): e29278, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38088537

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22,995 and 28,866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Células CACO-2 , Recombinación Homóloga , Glicoproteína de la Espiga del Coronavirus
7.
Angew Chem Int Ed Engl ; 62(6): e202216365, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515186

RESUMEN

Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.


Asunto(s)
Relaxina , Relaxina/química , Relaxina/metabolismo , Disulfuros/química , Técnicas de Síntesis en Fase Sólida , Proteínas/química , Insulina/química , Receptores Acoplados a Proteínas G/metabolismo
8.
Phys Chem Chem Phys ; 24(2): 1156-1166, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931206

RESUMEN

Calcium silicate hydrate (C-S-H) is the main hydration product of cementitious materials, often experiencing complex stress conditions in practical applications. Therefore, reactive molecular dynamics methods were used to investigate the mechanical response of the atomistic structure of C-S-H under various uniaxial and biaxial strain conditions. The results of uniaxial simulations show that C-S-H exhibits mechanical anisotropy and tension-compression asymmetry due to its layered atomistic structure. By fitting the stress-strain data, a stress-strain relationship that accurately represents the elastoplasticity of C-S-H was developed. The biaxial yield surface obtained from biaxial simulations was ellipsoidal, again reflecting the anisotropy and asymmetry of C-S-H. Four yield criteria (von Mises, Drucker-Prager, Hill, and Liu-Huang-Stout) were further investigated, and it was found that the Liu-Huang-Stout criterion can effectively capture all the major features of the yield surface. During a uniaxial tensile process in the z direction, multi-crack propagation was observed, which was aggravated and weakened by y direction tensile and compressive strains respectively. The results of chemical bond analyses revealed that, for different strain conditions, the CaW-OS and CaS-OS bonds play different roles in resisting deformation.

9.
Nature ; 530(7591): 447-52, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26886794

RESUMEN

The mixed lineage leukaemia (MLL) family of proteins (including MLL1-MLL4, SET1A and SET1B) specifically methylate histone 3 Lys4, and have pivotal roles in the transcriptional regulation of genes involved in haematopoiesis and development. The methyltransferase activity of MLL1, by itself severely compromised, is stimulated by the three conserved factors WDR5, RBBP5 and ASH2L, which are shared by all MLL family complexes. However, the molecular mechanism of how these factors regulate the activity of MLL proteins still remains poorly understood. Here we show that a minimized human RBBP5-ASH2L heterodimer is the structural unit that interacts with and activates all MLL family histone methyltransferases. Our structural, biochemical and computational analyses reveal a two-step activation mechanism of MLL family proteins. These findings provide unprecedented insights into the common theme and functional plasticity in complex assembly and activity regulation of MLL family methyltransferases, and also suggest a universal regulation mechanism for most histone methyltransferases.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Activación Enzimática , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/metabolismo
10.
Appetite ; 175: 106074, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35525333

RESUMEN

Episodic memory formation is fundamental to cognition and plays a key role in eating behaviors, indirectly promoting the maintenance and acceleration of weight gain. Impaired episodic memory function is a hallmark of people with overweight/obesity, nevertheless, little research has been conducted to explore the effects of overweight/obesity on neural networks associated with episodic memory. The current study aimed to unravel the behavioral responses and neurocognitive mechanisms underlying the episodic memory for food and non-food cues in females with overweight/obesity. To explore this issue, a group of females with overweight/obesity (n = 26) and a group of age-matched females with healthy weight (n = 28) participated in a functional magnetic resonance imaging (fMRI) event-related episodic memory paradigm, during which pictures of palatable food and pictures of neutral daily necessities were presented. Whole-brain analyses revealed differential engagement in several neural regions between the groups during an episodic memory task. Specifically, compared to the healthy weight controls, females with overweight/obesity exhibited reduced brain activity in the temporal, parietal, and frontal regions during episodic memory encoding and successful retrieval of both food and non-food cues. Additionally, activation patterns in the left hippocampus and right olfactory cortex of females with and without overweight/obesity suggested that item memory changed according to the type of stimuli presented during item memory. Specifically, females with overweight/obesity showed greater engagement of the left hippocampus and right olfactory cortex when processing food cues, but less activation of the left hippocampus and right olfactory cortex when presented with non-food cues. Consistent with the obesity and suboptimal food-related decision theoretical model, these findings provide evidence of dissociation of the neural underpinnings of episodic memory in females with overweight/obesity and underline important effects of overweight/obesity on brain functions related to episodic memory.

11.
Nature ; 517(7536): 640-4, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25383530

RESUMEN

DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 Å resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Activación Enzimática , Humanos , Ratones , Modelos Moleculares , Estructura Terciaria de Proteína , Xenopus laevis
12.
EMBO Rep ; 18(9): 1618-1630, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28747490

RESUMEN

The Nedd4 family E3 ligases are key regulators of cell growth and proliferation and are often misregulated in human cancers and other diseases. The ligase activities of Nedd4 E3s are tightly controlled via auto-inhibition. However, the molecular mechanism underlying Nedd4 E3 auto-inhibition and activation is poorly understood. Here, we show that the WW domains proceeding the catalytic HECT domain play an inhibitory role by binding directly to HECT in the Nedd4 E3 family member Itch. Our structural and biochemical analyses of Itch reveal that the WW2 domain and a following linker allosterically lock HECT in an inactive state inhibiting E2-E3 transthiolation. Binding of the Ndfip1 adaptor or JNK1-mediated phosphorylation relieves the auto-inhibition of Itch in a WW2-dependent manner. Aberrant activation of Itch leads to migration defects of cortical neurons during development. Our study provides a new mechanism governing the regulation of Itch.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4/química , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Regulación Alostérica , Animales , Cristalografía por Rayos X , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Ratones , Ubiquitina-Proteína Ligasas Nedd4/genética , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Dominios WW
13.
Exp Appl Acarol ; 77(4): 545-554, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30997606

RESUMEN

The acaricide bifenazate acts as complex III inhibitor whereas cyenopyrafen and SYP-9625 act as complex II inhibitors. All these acaricides are commonly used to control two-spotted spider mite (TSSM), Tetranychus urticae Koch. We examined field-evolved and laboratory-selected resistance of TSSM to these three acaricides and determined cross-resistance among them. Six field populations of TSSM showed low levels of resistance to bifenazate with resistance ratios ranging from 2.20 to 10.65 compared to a susceptible strain. SYP-9625, structurally similar to cyenopyrafen, showed slightly higher activity to TSSMs but significant cross-resistance in both field populations and a laboratory-selected strain by SYP-9625. However, low levels of resistance to these two chemicals were found in field populations even when used for short time periods. Cross-resistance was not found between bifenazate and Complex II inhibitors, cyenopyrafen and SYP-9625, in both field populations and the laboratory-selected strain. Field-evolved resistance of TSSM to the tested acaricides is still low and should be delayed by the implementation of resistance management practices. Cross-resistance between cyenopyrafen and SYP-9625 is obvious, so they should not be used together in resistance management strategies based on mode of action rotation.


Asunto(s)
Acaricidas/farmacología , Evolución Biológica , Resistencia a Medicamentos , Tetranychidae/efectos de los fármacos , Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Animales , Carbamatos/farmacología , China , Hidrazinas/farmacología , Pirazoles/farmacología , Tetranychidae/fisiología
14.
Doc Ophthalmol ; 129(2): 85-95, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25074040

RESUMEN

PURPOSE: The d-wave is typically elicited after the termination of an increment flash, but a decrement flash provides an alternative, and perhaps more appropriate, stimulus to elicit the d-wave. Here, we investigated the affects of stimulus polarity on the electroretinogram (ERG) response. METHODS: ERG responses elicited to increment and decrement flashes of varying intensity and duration from different background levels were measured from human participants to assess the b-wave and d-wave responses as a function of adaptation level and flash polarity. Response amplitudes were measured using standard metrics for waveform analysis. RESULTS: The amplitude of the b-wave is larger than the d-wave regardless of flash polarity when using different background levels which maximized the dynamic range of the two waveforms. However, when response amplitudes are measured from a common background, the d-wave elicited with decrement flash was larger than the b-wave elicited by an increment flash. This trend was evident across a range of background levels. The b-wave and d-wave become separate entities when flash duration reaches approximately 50 ms. Rapid-on and rapid-off sawtooth stimuli were also tested against increment and decrement step stimuli that were matched in mean luminance. These two stimulus types produced different amplitude b-wave and d-wave responses, suggesting asymmetric effects of the two stimulus types on the retinal response. CONCLUSIONS: We conclude that the response properties of the b-wave and d-wave are influenced by the duration, polarity and waveform of the stimulus, as well as the background from which the stimuli arise.


Asunto(s)
Adaptación Ocular/fisiología , Electrorretinografía , Retina/fisiología , Adolescente , Adulto , Humanos , Estimulación Luminosa
15.
Biomed Chromatogr ; 28(3): 385-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24132644

RESUMEN

In this study, a new LC-ESI-MS/MS-based method was validated for the quantitation of hemslecin A in rhesus monkey plasma using otophylloside A as internal standard (IS). Hemslecin A and the IS were extracted from rhesus monkey plasma using liquid-liquid extraction as the sample clean-up procedure, and were subjected to chromatography on a Phenomenex Luna CN column (150 × 2.0 mm, 3.0 µm) with the mobile phase consisting of methanol and 0.02 mol/mL ammonium acetate (55:45, v/v) at a flow rate of 0.2 mL/min. Detection was performed on an Agilent G6410B tandem mass spectrometer by positive ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 580.5 [M + NH4 ](+) → 503.4 and m/z 518.2 [M + NH4 ](+) → 345.0 for hemslecin A and IS, respectively. The assay was linear over the concentration range of 0.5-200 ng/mL and was successfully applied to a pharmacokinetic study in rhesus monkeys.


Asunto(s)
Cromatografía Liquida/métodos , Cucurbitacinas/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Cucurbitacinas/química , Cucurbitacinas/farmacocinética , Estabilidad de Medicamentos , Límite de Detección , Macaca mulatta , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos
16.
Geriatr Nurs ; 35(6): 448-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25155476

RESUMEN

This article describes the implementation and evaluation of the chronic-disease self-management (CDSM) program, developed by Stanford University, among Chinese older adults in a metro area of a large Southeastern City of the U.S. The method of Practical Participatory Evaluation through an academic-community partnership between university researchers and local Chinese communities was used to develop the program and assess its applicability in the population. Results suggested that language proficiency, communication, social network and culture of the population were the most influential factors for U.S. Chinese immigrants to attend the CDSM program. The program increased participants' knowledge, skills and confidence in CDSM, whereas its capability in addressing culture differences needed improvement. Knowledge learned in this project was instrumental in implementing similar projects among immigrants.


Asunto(s)
Enfermedad Crónica/terapia , Autocuidado , Anciano , China/etnología , Humanos , Evaluación de Programas y Proyectos de Salud , Estados Unidos
17.
Phys Rev E ; 109(3-2): 035002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632728

RESUMEN

In recent years, kirigami techniques have inspired the design of graphene-based nanodevices with exceptional stretchability and ductility. Based on an I-shaped cutting pattern, here we propose a graphene kirigami that exhibits remarkable stretchability and ductility in two independent planar directions along with negative Poisson's ratios. The deformation mechanism underlying the high stretchability of the structure is the flipping and rotation of its cutting ligaments during elongation. Molecular dynamics simulations show that the yield and fracture strains of graphene kirigami can be enhanced by factors of 6 and 10 in the two planar directions. In addition, the mechanical properties of the graphene kirigami can be tuned by altering the cutting geometric parameters as well as incorporating distinct cutting patterns in series. We develop a numerical algorithm to predict the stress-strain response of the series-connected graphene kirigami, and verify its accuracy using appropriate simulations. On this basis, the stress-strain response of the series-connected graphene kirigami can be tuned by altering its geometric parameters and the number of building blocks. This graphene kirigami could be applied to the design and development of next-generation flexible electronics such as stretchable electrodes and strain sensors.

18.
Sci Total Environ ; 913: 169643, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159769

RESUMEN

The advantageous characteristics of invasive pests, particularly their ability to reproduce and adapt to the environment, have been observed. However, it remains unclear what specific inherent superiority enables fruit pests to successfully invade and dominate in interactions with other species. In this study, we report that Cydia pomonella (Linnaeus), a notorious invasive pest of pome fruits and walnuts globally, employs unique reproductive strategies in response to quercetin, a plant compound in host fruits. By monitoring adult dynamics and fruit infestation rates, we observed a competitive relationship between C. pomonella and the native species Grapholita molesta (Busck). C. pomonella was able to occupy vacant niches to ensure its population growth. We also found that quercetin had different effects on the reproductive capacity and population growth of C. pomonella and G. molesta. While quercetin stimulated the fecundity and population growth of G. molesta, it inhibited C. pomonella. However, C. pomonella was able to rapidly increase its population after exposure to quercetin by adopting an 'accelerated burst' of oviposition strategy, with each individual making a greater reproductive contribution compared to the control. We further demonstrated that the effect of quercetin on oviposition is regulated by the juvenile hormone (JH) signaling pathway in C. pomonella, allowing it to prioritize survival. The enhanced reproductive fitness of G. molesta in response to quercetin is attributed to the regulation of JH titers and key genes such as Met and Kr-h1, which in turn up-regulate reproduction-related genes Vg and VgR. In contrast, C. pomonella is inhibited. These findings shed light on the mechanisms interspecific competition and help to improve our understanding of the global spread of C. pomonella, which can be attributed to its inherent superiority in terms of reproductive strategy.


Asunto(s)
Mariposas Nocturnas , Animales , Femenino , Quercetina/farmacología , Hormonas Juveniles/farmacología , Oviposición , Frutas , Transducción de Señal
19.
iScience ; 27(4): 109518, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38585662

RESUMEN

Herbivorous insects have evolved metabolic strategies to survive the challenges posed by plant secondary metabolites (SMs). This study reports an exploration of SMs present in pears, which serve as a defense against invasive Cydia pomonella and native Grapholita molesta and their counter-defense response. The feeding preferences of fruit borers are influenced by the softening of two pear varieties as they ripen. The content of SMs, such as quercetin and rutin, increases due to feeding by fruit borers. Notably, quercetin levels only increase after C. pomonella feeding. The consumption of SMs affects the growth of fruit borer population differently, potentially due to the activation of P450 genes by SMs. These two fruit borers are equipped with specific P450 enzymes that specialize in metabolizing quercetin and rutin, enabling them to adapt to these SMs in their host fruits. These findings provide valuable insights into the coevolution of plants and herbivorous insects.

20.
Am J Physiol Renal Physiol ; 305(5): F714-26, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23804454

RESUMEN

Meprin metalloproteases are highly expressed at the luminal interface of the intestine and kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro, including extracellular matrix proteins, adherens junction proteins, and cytokines, and have been implicated in a number of inflammatory diseases. The linkage between results in vitro and pathogenesis, however, has not been elucidated. The present study aimed to determine whether meprins are determinative factors in disrupting the barrier function of the epithelium. Active meprin A or meprin B applied to Madin-Darby canine kidney (MDCK) cell monolayers increased permeability to fluorescein isothiocyanate-dextran and disrupted immunostaining of the tight junction protein occludin but not claudin-4. Meprin A, but not meprin B, cleaved occludin in MDCK monolayers. Experiments with recombinant occludin demonstrated that meprin A cleaves the protein between Gly(100) and Ser(101) on the first extracellular loop. In vivo experiments demonstrated that meprin A infused into the mouse bladder increased the epithelium permeability to sodium fluorescein. Furthermore, monocytes from meprin knockout mice on a C57BL/6 background were less able to migrate through an MDCK monolayer than monocytes from their wild-type counterparts. These results demonstrate the capability of meprin A to disrupt epithelial barriers and implicate occludin as one of the important targets of meprin A that may modulate inflammation.


Asunto(s)
Metaloendopeptidasas/metabolismo , Monocitos/fisiología , Ocludina/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Perros , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda