RESUMEN
A power line is particularly vulnerable to wildfires in its vicinity, and various damage including line tripping can be caused by wildfires. Using remote sensing techniques, a novel model developed to assess the risk of line tripping caused by the wildfire occurrence in high-voltage power line corridors is presented. This model mainly contains the wildfire risk assessment for power line corridors and the estimation of the probability of line tripping when a wildfire occurs in power line corridors. For the wildfire risk assessment, high-resolution satellite data, Moderate Resolution Imaging Spectroradiometer (MODIS) data, meteorological data, and digital elevation model (DEM) data were employed to infer the natural factors. Human factors were also included to achieve good reliability. In the estimation of the probability of line tripping, vegetation characteristics, meteorological status, topographic conditions, and transmission line parameters were chosen as influencing factors. According to the above input variables and observed historical datasets, the risk levels for wildfire occurrence and line tripping were obtained with a logic regression approach. The experimental results demonstrate that the developed model can provide good results in predicting wildfire occurrence and line tripping for high-voltage power line corridors.
RESUMEN
This paper illustrates the processes carried out for the application of biphase complete complementary code (CCC) for ionospheric sounding to address the coherent interference problem in multi-station ionospheric sounding. An algorithm to generate the biphase CCC is described, and the detailed process of waveform construction and signal processing is presented. Characteristics of the autocorrelation and cross-correlation are analyzed through simulations, and the technical feasibility of the application of CCC is explored. Experiments of ionospheric sounding with the CCC are also implemented to verify performance. Results demonstrate that the CCC performs well in multi-station ionospheric sounding, and is capable of eliminating the coherent interference in the network of ionosondes, compared to the conventional complementary code.
RESUMEN
For decades, high-frequency (HF) radar has played an important role in sensing the Earth's environment. Advances in radar technology are providing opportunities to significantly improve the performance of HF radar, and to introduce more applications. This paper presents a low-power, small-size, and multifunctional HF radar developed by the Ionospheric Laboratory of Wuhan University, referred to as the Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS). Progress in the development of this radar is described in detail, including the basic principles of operation, the system configuration, the sounding waveforms, and the signal and data processing methods. Furthermore, its various remote sensing applications are briefly reviewed to show the good performance of this radar. Finally, some suggested solutions are given for further improvement of its performance.