Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neurochem ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38148633

RESUMEN

We have previously demonstrated a rapid secretion of matrix metalloproteinase-2 (MMP-2) in the ischemic brain. Since Scube2 can interact with Sonic hedgehog (Shh) to maintain blood-brain barrier (BBB) integrity via regulating the interaction between brain capillary endothelial cells (ECs) and perivascular astrocytes, and it is also a substrate of MMP-2, we hypothesized that the secreted MMP-2 could degrade Scube2 and contribute to ischemic BBB disruption. Using an in vitro ischemic model of 90-min oxygen-glucose deprivation/3-h reoxygenation (OGD/R) and an in vivo mouse stroke model of 90-min middle cerebral artery occlusion (MCAO) with 3-h reperfusion, we established an important role of MMP-2-mediated Scube2 degradation in early ischemic BBB disruption. Exposure of C8-D1A cells and bEnd.3 cells to OGD/R increased MMP secretion in both cells, and C8-D1A cells appeared to secrete more MMPs than bEnd.3 cells. Co-IP and double-immunostaining revealed that Scube2 co-localized well with MMP-2 in C8-D1A cells and could be pulled down by MMP-2 antibodies. In MCAO mice, Scube2 protein showed a drastic reduction in ischemic brain tissue, which was accompanied by suppressed expression of Shh and its downstream molecules. Of note, specific knockdown of astrocytic Scube2 with AAV-shScube2 augmented MCAO-induced Shh suppression and exacerbated BBB leakage and inflammatory reactions in the ischemic brain. Last, incubation of bEnd.3 cells with conditioned medium derived from OGD-treated C8-D1A cells led to a significant inhibition of the Shh pathway in bEnd.3 cells and degradation of VE-cadherin and ZO-1. Inhibition of MMP-2 with SB-3CT or over-expression of Scube2 with plasmids in C8-D1A cells alleviated the above effect of C8-D1A cells-derived conditioned medium. Taken together, our data indicate that ischemia-induced secretion of MMP-2 may contribute to early BBB disruption in ischemic stroke via interrupting the shared Scube2-Shh pathway between brain capillary ECs and perivascular astrocytes.

2.
Neurobiol Dis ; 176: 105936, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511337

RESUMEN

Cl- movement and Cl--sensitive signal pathways contributes to the survival and switch of inflammatory phenotype of microglia and are believed to play a key role in the inflammatory brain injury after ischemic stroke. Here, we demonstrated an important role of Cl- transmembrane transporter Swell1, in the survival and M2-like polarization of microglia in ischemic stroke. Knockdown or overexpression of Swell1 in cultured microglia inhibited or increased hypotonic-activated Cl- currents, respectively, and these changes were completely blocked by the volume-regulated anion channels (VRACs) inhibitor DCPIB. Swell1 conditional knock-in mice promoted microglia survival in ischemic brain region and resulted in significant reductions in neural cell death, infarction volume and neurological deficits following transient middle cerebral artery occlusion (tMCAO). Using gene manipulating technique and pharmacological inhibitors, we further revealed that Swell1 opening led to SGK1 (a Cl--sensitive kinase)-mediated activation of FOXO3a/CREB as well as WNK1 (another Cl--sensitive kinase)-mediated SPAK/OSR1-CCCs activation, which promoted microglia survival and M2-like polarization, thereby attenuating neuroinflammation and ischemic brain injury. Taken together, our results demonstrated that Swell1 is an essential component of microglia VRACs and its activation protects against ischemic brain injury through promoting microglia survival and M2-like polarization.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Microglía/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Enfermedades Neuroinflamatorias , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/metabolismo
3.
Molecules ; 26(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806413

RESUMEN

MsrB1 used to be named selenoprotein R, for it was first identified as a selenocysteine containing protein by searching for the selenocysteine insert sequence (SECIS) in the human genome. Later, it was found that MsrB1 is homologous to PilB in Neisseria gonorrhoeae, which is a methionine sulfoxide reductase (Msr), specifically reducing L-methionine sulfoxide (L-Met-O) in proteins. In humans and mice, four members constitute the Msr family, which are MsrA, MsrB1, MsrB2, and MsrB3. MsrA can reduce free or protein-containing L-Met-O (S), whereas MsrBs can only function on the L-Met-O (R) epimer in proteins. Though there are isomerases existent that could transfer L-Met-O (S) to L-Met-O (R) and vice-versa, the loss of Msr individually results in different phenotypes in mice models. These observations indicate that the function of one Msr cannot be totally complemented by another. Among the mammalian Msrs, MsrB1 is the only selenocysteine-containing protein, and we recently found that loss of MsrB1 perturbs the synaptic plasticity in mice, along with the astrogliosis in their brains. In this review, we summarized the effects resulting from Msr deficiency and the bioactivity of selenium in the central nervous system, especially those that we learned from the MsrB1 knockout mouse model. We hope it will be helpful in better understanding how the trace element selenium participates in the reduction of L-Met-O and becomes involved in neurobiology.


Asunto(s)
Sistema Nervioso Central/patología , Gliosis/patología , Metionina Sulfóxido Reductasas/fisiología , Plasticidad Neuronal , Selenio/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Gliosis/etiología , Gliosis/metabolismo , Humanos , Ratones , Ratones Noqueados
4.
Neurobiol Learn Mem ; 166: 107104, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31672630

RESUMEN

MsrB1 belongs to the methionine sulfoxide reductase family, it is also known as selenoprotein R for the sake of possessing a selenocysteine residue. It has been reported that MsrB1 could interact with actin, TRPM6, clusterin, and amyloid-beta in vitro. Thus, we presumed that MsrB1 may play an important role in central nervous system. To examine whether MsrB1 knockout has any effects on brain development or learning behavior, we carried out histological study on brains of MsrB1 deficient mice, and further tested spatial learning ability and long-term synaptic plasticity of these mice by using Morris water maze and electrophysiological methods. It was observed that loss of MsrB1 did not perturb the overall development of central nervous system except for the astrogliosis in hippocampus, however, it led mice to be incapable in spatial learning and severe impairments in LTP/LTD expression in CA1 of brain slices, along with the down-regulation of the synaptic proteins including PSD95, SYP, GluN2A and GluN2B, as well as the dramatic decrease of CaMKIIs phosphorylation at 286(287) compared with wild type mice. Taken together, these results suggest that MsrB1 is essential for mice spatial learning and LTP/LTD induction, and the MsrB1 related redox homeostasis may be involved in regulating the phosphorylation of CaMKIIs.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Metionina Sulfóxido Reductasas/genética , Aprendizaje Espacial/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Regulación hacia Abajo , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Hipocampo/patología , Metionina Sulfóxido Reductasas/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Fosforilación , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Appl Biochem Biotechnol ; 179(5): 819-29, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26945578

RESUMEN

Insulin resistance (IR) is the hallmark of type 2 diabetes mellitus (T2DM), which is one of the most important chronic noncommunicable diseases. Effective and feasible strategies to treat IR are still urgently needed. Previous research studies reported that whole body vibration (WBV) was beneficial for IR in clinical; however, its underlying mechanisms remains unknown. In the present study, db/db mice were treated with WBV administration 60 min/day for 12 weeks and the impaired insulin sensitivity was improved. Besides, liver steatosis was also ameliorated. Further explorations revealed that WBV could reduce the expression of SREBP1c and increase the expression of GSH-Px and consequently suppress oxidative stress. In conclusion, WBV attenuates oxidative stress to ameliorate liver steatosis and thus improves insulin resistance in db/db mice. Therefore, WBV administration is a promising treatment for individuals who suffered from central obesity and IR.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/genética , Metabolismo de los Lípidos , Estrés Oxidativo/fisiología , Vibración , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Insulina/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos NOD , Estrés Mecánico
6.
PLoS One ; 8(5): e64266, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23691187

RESUMEN

BACKGROUND: A greater reduction in cancer risk associated with mushroom diet rich in fungus polysaccharides is generally accepted. Meanwhile, edible Pleurotus abalonus as a member of Abalone mushroom family is a popular nutritional supplement that purportedly prevents cancer occurrence. However, these anecdotal claims are supported by limited studies describing tumor-inhibitory responses to the promising polysaccharides, and the molecular mechanisms underlying these properties have not yet been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We here fractionated the crude polysaccharide preparation from the fruiting bodies of P. abalonus into three fractions, namely PAP-1, PAP-2 and PAP-3, and tested these fractions for antiproliferative activity in human breast cancer MCF-7 cells. The largest PAP-3, an acidic polysaccharide fraction with a molecular mass of 3.68×10(5) Da, was the most active in inhibiting MCF-7 cancer cells with an IC50 of 193 µg/mL. The changes in cell normal morphology were observed by DAPI staining and the PAP-3-induced apoptosis was confirmed by annexin V/propidium iodide staining. The apoptosis was involved in mitochondria-mediated pathway including the loss of mitochondrial membrane potential (Δψm), the increase of Bax/Bcl-2 ratio, caspase-9/3 activation, and poly(ADP-ribose) polymerase (PARP) degradation, as well as intracellular ROS production. PAP-3 also induced up-regulation of p53, and cell cycle arrest at the S phase. The incubation of MCF-7 cells with antioxidant superoxide dismutase (SOD) and N-acetylcysteine (NAC) significantly attenuated the ROS generation and apoptosis caused by PAP-3, indicating that intracellular ROS plays a pivotal role in cell death. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the polysaccharides, especially acidic PAP-3, are very important nutritional ingredients responsible for, at least in part, the anticancer health benefits of P. abalonus via ROS-mediated mitochondrial apoptotic pathway. It is a major breakthrough bringing new insight of the potential use of the polysaccharides as health-care food or medicine to provide significant natural defense against human cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Polisacáridos Fúngicos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Pleurotus/química , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Polisacáridos Fúngicos/química , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Proteínas Asociadas a Pancreatitis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda