Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Chem Biol ; 19(9): 1063-1071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37169959

RESUMEN

The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
2.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558621

RESUMEN

Membrane proteins destined for lipid droplets (LDs), a major intracellular storage site for neutral lipids, are inserted into the endoplasmic reticulum (ER) and then trafficked to LDs where they reside in a hairpin loop conformation. Here, we show that LD membrane proteins can be delivered to the ER either co- or post-translationally and that their membrane-embedded region specifies pathway selection. The co-translational route for LD membrane protein biogenesis is insensitive to a small molecule inhibitor of the Sec61 translocon, Ipomoeassin F, and instead relies on the ER membrane protein complex (EMC) for membrane insertion. This route may even result in a transient exposure of the short N termini of some LD membrane proteins to the ER lumen, followed by putative topological rearrangements that would enable their transmembrane segment to form a hairpin loop and N termini to face the cytosol. Our study reveals an unexpected complexity to LD membrane protein biogenesis and identifies a role for the EMC during their co-translational insertion into the ER.


Asunto(s)
Gotas Lipídicas , Proteínas de la Membrana , Citosol/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Canales de Translocación SEC/genética
3.
J Cell Sci ; 134(4)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468620

RESUMEN

In order to produce proteins essential for their propagation, many pathogenic human viruses, including SARS-CoV-2, the causative agent of COVID-19 respiratory disease, commandeer host biosynthetic machineries and mechanisms. Three major structural proteins, the spike, envelope and membrane proteins, are amongst several SARS-CoV-2 components synthesised at the endoplasmic reticulum (ER) of infected human cells prior to the assembly of new viral particles. Hence, the inhibition of membrane protein synthesis at the ER is an attractive strategy for reducing the pathogenicity of SARS-CoV-2 and other obligate viral pathogens. Using an in vitro system, we demonstrate that the small molecule inhibitor ipomoeassin F (Ipom-F) potently blocks the Sec61-mediated ER membrane translocation and/or insertion of three therapeutic protein targets for SARS-CoV-2 infection; the viral spike and ORF8 proteins together with angiotensin-converting enzyme 2, the host cell plasma membrane receptor. Our findings highlight the potential for using ER protein translocation inhibitors such as Ipom-F as host-targeting, broad-spectrum antiviral agents.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoconjugados/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Antivirales/farmacología , COVID-19/virología , Humanos , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
4.
PLoS Biol ; 18(9): e3000874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997663

RESUMEN

Small membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown. Our study revealed that in Escherichia coli, the 27-amino-acid-long model protein YohP is recognized by the signal recognition particle (SRP), as indicated by in vivo and in vitro site-directed cross-linking. Cross-links to SRP were also observed for a second small membrane protein, the 33-amino-acid-long YkgR. However, in contrast to the canonical cotranslational recognition by SRP, SRP was found to bind to YohP posttranslationally. In vitro protein transport assays in the presence of a SecY inhibitor and proteoliposome studies demonstrated that SRP and its receptor FtsY are essential for the posttranslational membrane insertion of YohP by either the SecYEG translocon or by the YidC insertase. Furthermore, our data showed that the yohP mRNA localized preferentially and translation-independently to the bacterial membrane in vivo. In summary, our data revealed that YohP engages an unique SRP-dependent posttranslational insertion pathway that is likely preceded by an mRNA targeting step. This further highlights the enormous plasticity of bacterial protein transport machineries.


Asunto(s)
Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Partícula de Reconocimiento de Señal/metabolismo , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canales de Translocación SEC/metabolismo
5.
Molecules ; 27(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35889292

RESUMEN

The plant-derived macrocyclic resin glycoside ipomoeassin F (Ipom-F) binds to Sec61α and significantly disrupts multiple aspects of Sec61-mediated protein biogenesis at the endoplasmic reticulum, ultimately leading to cell death. However, extensive assessment of Ipom-F as a molecular tool and a therapeutic lead is hampered by its limited production scale, largely caused by intramolecular assembly of the macrocyclic ring. Here, using in vitro and/or in cellula biological assays to explore the first series of ring-opened analogues for the ipomoeassins, and indeed all resin glycosides, we provide clear evidence that macrocyclic integrity is not required for the cytotoxic inhibition of Sec61-dependent protein translocation by Ipom-F. Furthermore, our modeling suggests that open-chain analogues of Ipom-F can interact with multiple sites on the Sec61α subunit, most likely located at a previously identified binding site for mycolactone and/or the so-called lateral gate. Subsequent in silico-aided design led to the discovery of the stereochemically simplified analogue 3 as a potent, alternative lead compound that could be synthesized much more efficiently than Ipom-F and will accelerate future ipomoeassin research in chemical biology and drug discovery. Our work may also inspire further exploration of ring-opened analogues of other resin glycosides.


Asunto(s)
Antineoplásicos , Glicoconjugados , Antineoplásicos/química , Glicoconjugados/química , Glicósidos/farmacología , Canales de Translocación SEC/metabolismo
6.
J Org Chem ; 85(24): 16226-16235, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33264019

RESUMEN

Two new ring-size-varying analogues (2 and 3) of ipomoeassin F were synthesized and evaluated. Improved cytotoxicity (IC50: from 1.8 nM) and in vitro protein translocation inhibition (IC50: 35 nM) derived from ring expansion imply that the binding pocket of Sec61α (isoform 1) can accommodate further structural modifications, likely in the fatty acid portion. Streamlined preparation of the key diol intermediate 5 enabled gram-scale production, allowing us to establish that ipomoeassin F is biologically active in vivo (MTD: ∼3 mg/kg).


Asunto(s)
Glicoconjugados , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Estructura-Actividad
7.
J Am Chem Soc ; 141(21): 8450-8461, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31059257

RESUMEN

Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.


Asunto(s)
Glicoconjugados/farmacología , Canales de Translocación SEC/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Glicoconjugados/química , Humanos , Estructura Molecular , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/metabolismo
8.
J Org Chem ; 82(9): 4977-4985, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28394135

RESUMEN

An efficient synthetic route for ipomoeassin F and its tiglate-modified analogues was developed. The route features late-stage conformation-controlled highly regioselective esterification of the glucose diol in the disaccharide core. The results from the NCI-60 cell line screens of ipomoeassin F were reported for the first time. Moreover, two new C-3-cinnamoyl-Glcp analogues (2 and 3) were prepared. Their in-house cytotoxicity data convey an important message that both identity and positioning of the two α,ß-unsaturated esters are crucial. They are not interchangeable.


Asunto(s)
Cinamatos/química , Crotonatos/química , Glicoconjugados/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Hemiterpenos , Humanos , Análisis Espectral/métodos
9.
Bioorg Med Chem Lett ; 27(12): 2752-2756, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28465102

RESUMEN

Ipomoeassin F is a plant-derived macrocyclic glycolipid with single-digit nanomolar IC50 values against cancer cell growth. In previous structure-activity relationship studies, we have demonstrated that certain modifications around the fucoside moiety did not cause significant cytotoxicity loss. To further elucidate the effect of the fucoside moiety on the biological activity, we describe here the design and synthesis of several fucose-truncated monosaccharide analogues of ipomoeassin F. Subsequent biological evaluation strongly suggests that the 6-membered ring of the fucoside moiety is essential to the overall conformation of the molecule, thereby influencing bioactivity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diseño de Fármacos , Fucosa/farmacología , Glicoconjugados/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fucosa/química , Glicoconjugados/síntesis química , Glicoconjugados/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
10.
Faraday Discuss ; 190: 387-98, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27203295

RESUMEN

In this work, the compositions of Ce-Al, Er-Al and La-Bi intermetallic compounds were estimated by the cyclic voltammetry (CV) technique. At first, CV measurements were carried out at different reverse potentials to study the co-reduction processes of Ce-Al, Er-Al and La-Bi systems. The CV curves obtained were then re-plotted with the current as a function of time, and the coulomb number of each peak was calculated. By comparing the coulomb number of the related peaks, the compositions of the Ce-Al, Er-Al and La-Bi intermetallic compounds formed in the co-reduction process could be estimated. The results showed that Al11Ce3, Al3Ce, Al2Ce and AlCe could be formed by the co-reduction of Ce(iii) and Al(iii). For the co-reduction of Er(iii) and Al(iii), Al3Er2, Al2Er and AlEr were formed. In a La(iii) and Bi(iii) co-existing system in LiCl-KCl melts, LaBi2, LaBi and Li3Bi were the major products as a result of co-reduction.

11.
J Org Chem ; 80(18): 9279-91, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26317990

RESUMEN

Ipomoeassin F, a macrolide glycoresin containing an embedded disaccharide, possesses potent in vitro antitumor activity with an unknown mechanism of function. It inhibits tumor cell growth with single-digit nanomolar IC50 values, superior to many clinical chemotherapeutic drugs. To facilitate translation of its bioactivity into protein function for drug development, we report here a new synthesis for the gram-scale production of ipomoeassin F (3.8% over 17 linear steps) from commercially available starting materials. The conformation-controlled subtle reactivity differences of the hydroxyl groups in carbohydrates were utilized to quickly construct the disaccharide core, which, along with judicial selection of protecting groups, made the current synthesis very efficient. The same strategy was also applied to the smooth preparation of the 11R-epimer of ipomoeassin F for the first time. Cytotoxicity assays demonstrated the crucial role of the natural 11S configuration. In addition, cell cycle analyses and apoptosis assays on ipomoeassin F and/or its epimer were conducted. This work has laid a solid foundation for understanding the medicinal potential of the ipomoeassin family of glycolipids in the future.


Asunto(s)
Antineoplásicos/síntesis química , Glicoconjugados/síntesis química , Glucolípidos/química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glicoconjugados/química , Humanos , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad
12.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39131350

RESUMEN

Ipomoeassin F (Ipom-F) is a natural compound with embedded carbohydrates that exhibits a potent cytotoxic effect on triple-negative breast cancer (TNBC) cells. The mechanism behind this selective potency remains unclear. To elucidate this mechanism, we analyzed the proteome profiles of the TNBC MDA-MB-231 cells after exposure to Ipom-F at different time points and increasing doses using a quantitative proteomic method. Our proteomic data demonstrate that the major effect of Ipom-F on MDA-MB-231 cells is the inhibition of membrane and secreted protein expression. Our proteomic data are consistent with the recently uncovered molecular mechanism of action of Ipom-F, which binds to Sec61-α and inhibits the co-translational import of proteins into the endoplasmic reticulum. We have defined a subset of membrane and secreted proteins particularly sensitive to Ipom-F. Analysis of the expression of these Ipom-F-sensitive proteins in cancer cell lines and breast cancer tissues demonstrates that some of these proteins are upregulated in TNBC cells. Thus, it is likely that TNBC cells may have adapted to the elevated levels of some proteins identified as sensitive to Ipom-F in this study; inhibition of the expression of these proteins leads to a crisis in proliferation and/or survival for the cells.

13.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865118

RESUMEN

The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3Galt6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.

14.
Int J Biol Sci ; 19(13): 4020-4035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705743

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer where no effective therapy has been developed. Here, we report that the natural product ER translocon inhibitor ipomoeassin F is a selective inhibitor of TNBC cell growth. A proteomic analysis of TNBC cells revealed that ipomoeassin F significantly reduced the levels of ER molecular chaperones, including PDIA6 and PDIA4, and induced ER stress, unfolded protein response (UPR) and autophagy in TNBC cells. Mechanistically, ipomoeassin F, as an inhibitor of Sec61α-containing ER translocon, blocks ER translocation of PDIA6, inducing its proteasomal degradation. Silencing of PDIA6 or PDIA4 by RNA interferences or treatment with a small molecule inhibitor of the protein disulfide isomerases in TNBC cells successfully recapitulated the ipomoeassin F phenotypes, including the induction of ER stress, UPR and autophagy, suggesting that the reduction of PDIAs is the key mediator of the pharmacological effects of ipomoeassin F. Moreover, ipomoeassin F significantly suppressed TNBC growth in a mouse tumor xenograft model, with a marked reduction in PDIA6 and PDIA4 levels in the tumor samples. Our study demonstrates that Sec61α-containing ER translocon and PDIAs are potential drug targets for TNBC and suggests that ipomoeassin F could serve as a lead for developing ER translocon-targeted therapy for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteómica , Glicoconjugados , Modelos Animales de Enfermedad , Chaperonas Moleculares
15.
Sci Rep ; 11(1): 11562, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079010

RESUMEN

The Sec61 complex translocates nascent polypeptides into and across the membrane of the endoplasmic reticulum (ER), providing access to the secretory pathway. In this study, we show that Ipomoeassin-F (Ipom-F), a selective inhibitor of protein entry into the ER lumen, blocks the in vitro translocation of certain secretory proteins and ER lumenal folding factors whilst barely affecting others such as albumin. The effects of Ipom-F on protein secretion from HepG2 cells are twofold: reduced ER translocation combined, in some cases, with defective ER lumenal folding. This latter issue is most likely a consequence of Ipom-F preventing the cell from replenishing its ER lumenal chaperones. Ipom-F treatment results in two cellular stress responses: firstly, an upregulation of stress-inducible cytosolic chaperones, Hsp70 and Hsp90; secondly, an atypical unfolded protein response (UPR) linked to the Ipom-F-mediated perturbation of ER function. Hence, although levels of spliced XBP1 and CHOP mRNA and ATF4 protein increase with Ipom-F, the accompanying increase in the levels of ER lumenal BiP and GRP94 seen with tunicamycin are not observed. In short, although Ipom-F reduces the biosynthetic load of newly synthesised secretory proteins entering the ER lumen, its effects on the UPR preclude the cell restoring ER homeostasis.


Asunto(s)
Glicoconjugados/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Células Hep G2 , Humanos , Transporte de Proteínas , Canales de Translocación SEC/metabolismo
16.
Commun Biol ; 4(1): 828, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211117

RESUMEN

The heterotrimeric Sec61 complex is a major site for the biogenesis of transmembrane proteins (TMPs), accepting nascent TMP precursors that are targeted to the endoplasmic reticulum (ER) by the signal recognition particle (SRP). Unlike most single-spanning membrane proteins, the integration of type III TMPs is completely resistant to small molecule inhibitors of the Sec61 translocon. Using siRNA-mediated depletion of specific ER components, in combination with the potent Sec61 inhibitor ipomoeassin F (Ipom-F), we show that type III TMPs utilise a distinct pathway for membrane integration at the ER. Hence, following SRP-mediated delivery to the ER, type III TMPs can uniquely access the membrane insertase activity of the ER membrane complex (EMC) via a mechanism that is facilitated by the Sec61 translocon. This alternative EMC-mediated insertion pathway allows type III TMPs to bypass the Ipom-F-mediated blockade of membrane integration that is seen with obligate Sec61 clients.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Canales de Translocación SEC/metabolismo , Animales , Retículo Endoplásmico/efectos de los fármacos , Glicoconjugados/farmacología , Células HeLa , Humanos , Immunoblotting , Membranas Intracelulares/efectos de los fármacos , Modelos Biológicos , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , Canales de Translocación SEC/genética , Partícula de Reconocimiento de Señal/metabolismo
17.
bioRxiv ; 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33269350

RESUMEN

In order to produce proteins essential for their propagation, many pathogenic human viruses, including SARS-CoV-2 the causative agent of COVID-19 respiratory disease, commandeer host biosynthetic machineries and mechanisms. Three major structural proteins, the spike, envelope and membrane proteins, are amongst several SARS-CoV-2 components synthesised at the endoplasmic reticulum (ER) of infected human cells prior to the assembly of new viral particles. Hence, the inhibition of membrane protein synthesis at the ER is an attractive strategy for reducing the pathogenicity of SARS-CoV-2 and other obligate viral pathogens. Using an in vitro system, we demonstrate that the small molecule inhibitor ipomoeassin F (Ipom-F) potently blocks the Sec61-mediated ER membrane translocation/insertion of three therapeutic protein targets for SARS-CoV-2 infection; the viral spike and ORF8 proteins together with angiotensin-converting enzyme 2, the host cell plasma membrane receptor. Our findings highlight the potential for using ER protein translocation inhibitors such as Ipom-F as host-targeting, broad-spectrum, antiviral agents.

18.
ACS Med Chem Lett ; 11(6): 1111-1117, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32550989

RESUMEN

Itraconazole, a widely used antifungal drug, was found to possess antiangiogenic activity and is currently undergoing multiple clinical trials for the treatment of different types of cancer. However, it suffers from extremely low solubility and strong interactions with many drugs through inhibition of CYP3A4, limiting its potential as a new antiangiogenic and anticancer drug. To address these issues, a series of analogs in which the phenyl group is replaced with pyridine or fluorine-substituted benzene was synthesized. Among them the pyridine- and tetrazole-containing compound 24 has significantly improved solubility and reduced CYP3A4 inhibition compared to itraconazole. Similar to itraconazole, compound 24 inhibited the AMPK/mTOR signaling axis and the glycosylation of VEGFR2. It also induced cholesterol accumulation in the endolysosome and demonstrated binding to the sterol-sensing domain of NPC1 in a simulation study. These results suggested that compound 24 may serve as an attractive candidate for the development of a new generation of antiangiogenic drug.

19.
J Med Chem ; 61(24): 11158-11168, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30481027

RESUMEN

Itraconazole has been found to possess potent antiangiogenic activity, exhibiting promising antitumor activity in several human clinical studies. The wider use of itraconazole in the treatment of cancer, however, has been limited by its potent inhibition of the drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4). In an effort to eliminate the CYP3A4 inhibition while retaining its antiangiogenic activity, we designed and synthesized a series of derivatives in which the 1,2,4-triazole ring is replaced with various azoles and nonazoles. Among these analogues, 15n with tetrazole in place of 1,2,4-triazole exhibited optimal inhibition of human umbilical vein endothelial cell proliferation with an IC50 of 73 nM without a significant effect on CYP3A4 (EC50 > 20 µM). Similar to itraconazole, 15n induced Niemann-Pick C phenotype (NPC phenotype) and blocked AMPK/mechanistic target of rapamycin signaling. These results suggest that 15n is a promising angiogenesis inhibitor that can be used in combination with most other known anticancer drugs.


Asunto(s)
Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacología , Itraconazol/análogos & derivados , Proliferación Celular/efectos de los fármacos , Inhibidores del Citocromo P-450 CYP3A/química , Evaluación Preclínica de Medicamentos/métodos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Tetrazoles/química
20.
Eur J Med Chem ; 144: 751-757, 2018 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-29291442

RESUMEN

Ipomoeassin F, a plant-derived macrolide, exhibited single-digit nanomolar growth inhibition activity against many cancer cell lines. In this report, a series of 5-oxa/aza analogues was prepared and screened for cytotoxicity. Replacement of 5-CH2 with O/NH simplified the synthesis and led to only a small activity loss. N-methylation almost completely restored the potency. Further studies with additional 5-oxa analogues suggested, for the first time, that size and flexibility of the ring also significantly influence the bioactivity of ipomoeassin F.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Aza/farmacología , Glicoconjugados/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos Aza/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glicoconjugados/síntesis química , Glicoconjugados/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda