RESUMEN
A class of translation inhibitors, exemplified by the natural product rocaglamide A (RocA), isolated from Aglaia genus plants, exhibits antitumor activity by clamping eukaryotic translation initiation factor 4A (eIF4A) onto polypurine sequences in mRNAs. This unusual inhibitory mechanism raises the question of how the drug imposes sequence selectivity onto a general translation factor. Here, we determined the crystal structure of the human eIF4A1â ATP analogâ RocAâ polypurine RNA complex. RocA targets the "bi-molecular cavity" formed characteristically by eIF4A1 and a sharply bent pair of consecutive purines in the RNA. Natural amino acid substitutions found in Aglaia eIF4As changed the cavity shape, leading to RocA resistance. This study provides an example of an RNA-sequence-selective interfacial inhibitor fitting into the space shaped cooperatively by protein and RNA with specific sequences.
Asunto(s)
Benzofuranos/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN/metabolismo , Ribosomas/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Aglaia/química , Aglaia/genética , Aglaia/metabolismo , Sustitución de Aminoácidos , Benzofuranos/química , Benzofuranos/aislamiento & purificación , Benzofuranos/farmacología , Sitios de Unión , Resistencia a Medicamentos/genética , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Inhibidores de la Síntesis de la Proteína/farmacología , ARN/química , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/genética , Relación Estructura-ActividadRESUMEN
Gene expression is known to vary among individuals, and this variability can impact the phenotypic diversity observed in natural populations. While the transcriptome and proteome have been extensively studied, little is known about the translation process itself. Here, we therefore performed ribosome and transcriptomic profiling on a genetically and ecologically diverse set of natural isolates of the Saccharomyces cerevisiae yeast. Interestingly, we found that the Euclidean distances between each profile and the expression fold changes in each pairwise isolate comparison were higher at the transcriptomic level. This observation clearly indicates that the transcriptional variation observed in the different isolates is buffered through a phenomenon known as post-transcriptional buffering at the translation level. Furthermore, this phenomenon seemed to have a specific signature by preferentially affecting essential genes as well as genes involved in complex-forming proteins, and low transcribed genes. We also explored the translation of the S. cerevisiae pangenome and found that the accessory genes related to introgression events displayed similar transcription and translation levels as the core genome. By contrast, genes acquired through horizontal gene transfer events tended to be less efficiently translated. Together, our results highlight both the extent and signature of the post-transcriptional buffering.
Asunto(s)
Saccharomyces cerevisiae , Transcriptoma , Humanos , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Ribosomas/genética , Antecedentes Genéticos , Variación GenéticaRESUMEN
Although ribosome-profiling and translation initiation sequencing (TI-seq) analyses have identified many noncanonical initiation codons, the precise detection of translation initiation sites (TISs) remains a challenge, mainly because of experimental artifacts of such analyses. Here, we describe a new method, TISCA (TIS detection by translation Complex Analysis), for the accurate identification of TISs. TISCA proved to be more reliable for TIS detection compared with existing tools, and it identified a substantial number of near-cognate codons in Kozak-like sequence contexts. Analysis of proteomics data revealed the presence of methionine at the NH2-terminus of most proteins derived from near-cognate initiation codons. Although eukaryotic initiation factor 2 (eIF2), eIF2A and eIF2D have previously been shown to contribute to translation initiation at near-cognate codons, we found that most noncanonical initiation events are most probably dependent on eIF2, consistent with the initial amino acid being methionine. Comprehensive identification of TISs by TISCA should facilitate characterization of the mechanism of noncanonical initiation.
Asunto(s)
Codón Iniciador , Factor 2 Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biología Computacional/métodos , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Humanos , Sistemas de Lectura Abierta , Huella de Proteína , Proteómica , Análisis de Secuencia de ARNRESUMEN
Accurate target recognition in transcript degradation is crucial for regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, a number of meiotic transcripts are recognized by a YTH-family RNA-binding protein, Mmi1, and selectively degraded by the nuclear exosome during mitotic growth. Mmi1 forms nuclear foci in mitotically growing cells, and the nuclear exosome colocalizes to such foci. However, it remains elusive how Mmi1 and the nuclear exosome are connected. Here, we show that a complex called MTREC (Mtl1-Red1 core) or NURS (nuclear RNA silencing) that consists of a zinc-finger protein, Red1, and an RNA helicase, Mtl1, is required for the recruitment of the nuclear exosome to Mmi1 foci. Physical interaction between Mmi1 and the nuclear exosome depends on Red1. Furthermore, a chimeric protein involving Mmi1 and Rrp6, which is a nuclear-specific component of the exosome, suppresses the ectopic expression phenotype of meiotic transcripts in red1Δ cells and mtl1 mutant cells. These data indicate that the primary function of MTREC/NURS in meiotic transcript elimination is to link Mmi1 to the nuclear exosome physically.
Asunto(s)
Proteínas Portadoras/metabolismo , Exosomas/metabolismo , Regulación Fúngica de la Expresión Génica , Meiosis/genética , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Escisión y Poliadenilación de ARNm/genéticaRESUMEN
Regulation of gene expression at the translational level is key to determining cell fate and function. An RNA-binding protein, RNG140 (caprin2), plays a role in eye lens differentiation and has been reported to function in translational regulation. However, the mechanism and its role in eyes has remained unclear. Here, we show that RNG140 binds to the translation initiation factor eukaryotic initiation factor 3 (eIF3) and suppresses translation through mechanisms involving suppression of eIF3-dependent translation initiation. Comprehensive ribosome profiling revealed that overexpression of RNG140 in cultured Chinese hamster ovary cells reduces translation of long mRNAs, including those associated with cell proliferation. RNG140-mediated translational regulation also operates in the mouse eye, where RNG140 knockout increased the translation of long mRNAs. mRNAs involved in lens differentiation, such as crystallin mRNAs, are short and can escape translational inhibition by RNG140 and be translated in differentiating lenses. Thus, this study provides insights into the mechanistic basis of lens cell transition from proliferation to differentiation via RNG140-mediated translational regulation.
Asunto(s)
Diferenciación Celular/fisiología , Cristalino/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Células CHO , Proliferación Celular/fisiología , Cricetulus , Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cristalino/citología , Ratones , Ratones Noqueados , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
Long non-coding RNAs (lncRNAs) regulating gene expression at the chromatin level are widespread among eukaryotes. However, their functions and the mechanisms by which they act are not fully understood. Here, we identify new fission yeast regulatory lncRNAs that are targeted, at their site of transcription, by the YTH domain of the RNA-binding protein Mmi1 and degraded by the nuclear exosome. We uncover that one of them, nam1, regulates entry into sexual differentiation. Importantly, we demonstrate that Mmi1 binding to this lncRNA not only triggers its degradation but also mediates its transcription termination, thus preventing lncRNA transcription from invading and repressing the downstream gene encoding a mitogen-activated protein kinase kinase kinase (MAPKKK) essential to sexual differentiation. In addition, we show that Mmi1-mediated termination of lncRNA transcription also takes place at pericentromeric regions where it contributes to heterochromatin gene silencing together with RNA interference (RNAi). These findings reveal an important role for selective termination of lncRNA transcription in both euchromatic and heterochromatic lncRNA-based gene silencing processes.
Asunto(s)
Silenciador del Gen , Heterocromatina/genética , ARN Largo no Codificante/genética , Regulación Fúngica de la Expresión Génica , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismoRESUMEN
Codon bias has been implicated as one of the major factors contributing to mRNA stability in several model organisms. However, the molecular mechanisms of codon bias on mRNA stability remain unclear in humans. Here, we show that human cells possess a mechanism to modulate RNA stability through a unique codon bias. Bioinformatics analysis showed that codons could be clustered into two distinct groups-codons with G or C at the third base position (GC3) and codons with either A or T at the third base position (AT3): the former stabilizing while the latter destabilizing mRNA. Quantification of codon bias showed that increased GC3-content entails proportionately higher GC-content. Through bioinformatics, ribosome profiling, and in vitro analysis, we show that decoupling the effects of codon bias reveals two modes of mRNA regulation, one GC3- and one GC-content dependent. Employing an immunoprecipitation-based strategy, we identify ILF2 and ILF3 as RNA-binding proteins that differentially regulate global mRNA abundances based on codon bias. Our results demonstrate that codon bias is a two-pronged system that governs mRNA abundance.
Asunto(s)
Uso de Codones , Codón , ARN Mensajero/genética , Biología Computacional/métodos , Guanilato Ciclasa/genética , Humanos , Proteína del Factor Nuclear 45/metabolismo , Estabilidad del ARN , Ribosomas/genética , Ribosomas/metabolismo , Transcripción GenéticaRESUMEN
In eukaryotic cells, unconjugated oligosaccharides that are structurally related to N-glycans (i.e. free N-glycans) are generated either from misfolded N-glycoproteins destined for the endoplasmic reticulum-associated degradation or from lipid-linked oligosaccharides, donor substrates for N-glycosylation of proteins. The mechanism responsible for the generation of free N-glycans is now well-understood, but the issue of whether other types of free glycans are present remains unclear. Here, we report on the accumulation of free, O-mannosylated glycans in budding yeast that were cultured in medium containing mannose as the carbon source. A structural analysis of these glycans revealed that their structures are identical to those of O-mannosyl glycans that are attached to glycoproteins. Deletion of the cyc8 gene, which encodes for a general transcription repressor, resulted in the accumulation of excessive amounts of free O-glycans, concomitant with a severe growth defect, a reduction in the level of an O-mannosylated protein, and compromised cell wall integrity. Our findings provide evidence in support of a regulated pathway for the degradation of O-glycoproteins in yeast and offer critical insights into the catabolic mechanisms that control the fate of O-glycosylated proteins.
Asunto(s)
Glicoproteínas/metabolismo , Manosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Pared Celular/metabolismo , Glicoproteínas/química , Homeostasis , Proteolisis , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/químicaRESUMEN
In recent years, it has become evident that eukaryotic genomes are pervasively transcribed and produce numerous non-coding transcripts, including long non-coding RNAs (lncRNAs). Although research of such genomic enigmas is in the early stages, a growing number of lncRNAs have been characterized and found to be principal actors in a variety of biological processes rather than merely representing transcriptional noise. Here, we review recent findings on lncRNAs in yeast systems. We especially focus on lncRNA-mediated cellular regulations to respond to environmental changes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Asunto(s)
ARN Largo no Codificante/genética , Transcripción Genética , Humanos , ARN Largo no Codificante/clasificación , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genéticaRESUMEN
RNA interference (RNAi) silences gene expression by acting both at the transcriptional and post-transcriptional levels in a broad range of eukaryotes. In the fission yeast Schizosaccharomyces pombe the RNA-Induced Transcriptional Silencing (RITS) RNAi complex mediates heterochromatin formation at non-coding and repetitive DNA. However, the targeting and role of RITS at other genomic regions, including protein-coding genes, remain unknown. Here we show that RITS localizes to specific meiotic genes and mRNAs. Remarkably, RITS is guided to these meiotic targets by the RNA-binding protein Mmi1 and its associated RNA surveillance machinery that together degrade selective meiotic mRNAs during vegetative growth. Upon sexual differentiation, RITS localization to the meiotic genes and mRNAs is lost. Large-scale identification of Mmi1 RNA targets reveals that RITS subunit Chp1 associates with the vast majority of them. In addition, loss of RNAi affects the effective repression of sexual differentiation mediated by the Mmi1 RNA surveillance machinery. These findings uncover a new mechanism for recruiting RNAi to specific meiotic genes and suggest that RNAi participates in the control of sexual differentiation in fission yeast.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Modelos Biológicos , Unión Proteica , ARN de Hongos/metabolismoRESUMEN
Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.
Asunto(s)
Neuroglía , Biosíntesis de Proteínas , Animales , Neuroglía/metabolismo , Neuronas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regulación de la Expresión Génica , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/citología , Ribosomas/metabolismo , Drosophila/genéticaRESUMEN
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)âCas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPRâCas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Asunto(s)
ARN Guía de Sistemas CRISPR-Cas , Ribosomas , Animales , Codón Iniciador/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Silenciador del Gen , Biosíntesis de Proteínas/genética , Iniciación de la Cadena Peptídica Traduccional , Mamíferos/genéticaRESUMEN
Small-molecule compounds that elicit mRNA-selective translation repression have attracted interest due to their potential for expansion of druggable space. However, only a limited number of examples have been reported to date. Here, we show that desmethyl desamino pateamine A (DMDA-PatA) represses translation in an mRNA-selective manner by clamping eIF4A, a DEAD-box RNA-binding protein, onto GNG motifs. By systematically comparing multiple eIF4A inhibitors by ribosome profiling, we found that DMDA-PatA has unique mRNA selectivity for translation repression. Unbiased Bind-n-Seq reveals that DMDA-PatA-targeted eIF4A exhibits a preference for GNG motifs in an ATP-independent manner. This unusual RNA binding sterically hinders scanning by 40S ribosomes. A combination of classical molecular dynamics simulations and quantum chemical calculations, and the subsequent development of an inactive DMDA-PatA derivative reveals that the positive charge of the tertiary amine on the trienyl arm induces G selectivity. Moreover, we identified that DDX3, another DEAD-box protein, is an alternative DMDA-PatA target with the same effects on eIF4A. Our results provide an example of the sequence-selective anchoring of RNA-binding proteins and the mRNA-selective inhibition of protein synthesis by small-molecule compounds.
Asunto(s)
ARN Helicasas DEAD-box , Factor 4A Eucariótico de Iniciación , Biosíntesis de Proteínas , ARN Mensajero , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Simulación de Dinámica Molecular , Ribosomas/metabolismo , Motivos de Nucleótidos , Unión Proteica , Células HEK293 , Compuestos Epoxi , Tiazoles , MacrólidosRESUMEN
Eukaryotic translation initiation factor (eIF)4A-a DEAD-box RNA-binding protein-plays an essential role in translation initiation. Recent reports have suggested helicase-dependent and helicase-independent functions for eIF4A, but the multifaceted roles of eIF4A have not been fully explored. Here we show that eIF4A1 enhances translational repression during the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), an essential kinase complex controlling cell proliferation. RNA pulldown followed by sequencing revealed that eIF4A1 preferentially binds to mRNAs containing terminal oligopyrimidine (TOP) motifs, whose translation is rapidly repressed upon mTORC1 inhibition. This selective interaction depends on a La-related RNA-binding protein, LARP1. Ribosome profiling revealed that deletion of EIF4A1 attenuated the translational repression of TOP mRNAs upon mTORC1 inactivation. Moreover, eIF4A1 increases the interaction between TOP mRNAs and LARP1 and, thus, ensures stronger translational repression upon mTORC1 inhibition. Our data show the multimodality of eIF4A1 in modulating protein synthesis through an inhibitory binding partner and provide a unique example of the repressive role of a universal translational activator.
Asunto(s)
Autoantígenos , Factor 4A Eucariótico de Iniciación , Diana Mecanicista del Complejo 1 de la Rapamicina , Biosíntesis de Proteínas , Ribonucleoproteínas , Antígeno SS-B , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Autoantígenos/metabolismo , Autoantígenos/genética , Humanos , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células HEK293 , Unión Proteica , Animales , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/genéticaRESUMEN
Ribosome profiling, which is based on deep sequencing of ribosome footprints, has served as a powerful tool for elucidating the regulatory mechanism of protein synthesis. However, the current method has substantial issues: contamination by rRNAs and the lack of appropriate methods to measure ribosome numbers in transcripts. Here, we overcome these hurdles through the development of "Ribo-FilterOut", which is based on the separation of footprints from ribosome subunits by ultrafiltration, and "Ribo-Calibration", which relies on external spike-ins of stoichiometrically defined mRNA-ribosome complexes. A combination of these approaches estimates the number of ribosomes on a transcript, the translation initiation rate, and the overall number of translation events before its decay, all in a genome-wide manner. Moreover, our method reveals the allocation of ribosomes under heat shock stress, during aging, and across cell types. Our strategy of modified ribosome profiling measures kinetic and stoichiometric parameters of cellular translation across the transcriptome.
Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero , Ribosomas , Ribosomas/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Transcriptoma , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Calibración , Respuesta al Choque Térmico/genética , Perfilado de RibosomasRESUMEN
The prion-like domain (PrLD) is a class of intrinsically disordered regions. Although its propensity to form condensates has been studied in the context of neurodegenerative diseases, the physiological role of PrLD remains unclear. Here, we investigated the role of PrLD in the RNA-binding protein NFAR2, generated by a splicing variant of the Ilf3 gene. Removal of the PrLD in mice did not impair the function of NFAR2 required for survival, but did affect the responses to chronic water immersion and restraint stress (WIRS). The PrLD was required for WIRS-sensitive nuclear localization of NFAR2 and WIRS-induced changes in mRNA expression and translation in the amygdala, a fear-related brain region. Consistently, the PrLD conferred resistance to WIRS in fear-associated memory formation. Our study provides insights into the PrLD-dependent role of NFAR2 for chronic stress adaptation in the brain.
RESUMEN
Body temperature in homeothermic animals does not remain constant but displays a regular circadian fluctuation within a physiological range (e.g., 35°C-38.5°C in mice), constituting a fundamental systemic signal to harmonize circadian clock-regulated physiology. Here, we find the minimal upstream open reading frame (uORF) encoded by the 5' UTR of the mammalian core clock gene Per2 and reveal its role as a regulatory module for temperature-dependent circadian clock entrainment. A temperature shift within the physiological range does not affect transcription but instead increases translation of Per2 through its minimal uORF. Genetic ablation of the Per2 minimal uORF and inhibition of phosphoinositide-3-kinase, lying upstream of temperature-dependent Per2 protein synthesis, perturb the entrainment of cells to simulated body temperature cycles. At the organismal level, Per2 minimal uORF mutant skin shows delayed wound healing, indicating that uORF-mediated Per2 modulation is crucial for optimal tissue homeostasis. Combined with transcriptional regulation, Per2 minimal uORF-mediated translation may enhance the fitness of circadian physiology.
Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Sistemas de Lectura Abierta/genética , Temperatura Corporal , Regulación de la Expresión Génica , Mamíferos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismoRESUMEN
Plants often generate secondary metabolites as defense mechanisms against parasites. Although some fungi may potentially overcome the barrier presented by antimicrobial compounds, only a limited number of examples and molecular mechanisms of resistance have been reported. Here, we found an Aglaia plant-parasitizing fungus that overcomes the toxicity of rocaglates, which are translation inhibitors synthesized by the plant, through an amino acid substitution in a eukaryotic translation initiation factor (eIF). De novo transcriptome assembly revealed that the fungus belongs to the Ophiocordyceps genus and that its eIF4A, a molecular target of rocaglates, harbors an amino acid substitution critical for rocaglate binding. Ribosome profiling harnessing a cucumber-infecting fungus, Colletotrichum orbiculare, demonstrated that the translational inhibitory effects of rocaglates were largely attenuated by the mutation found in the Aglaia parasite. The engineered C. orbiculare showed a survival advantage on cucumber plants with rocaglates. Our study exemplifies a plant-fungus tug-of-war centered on secondary metabolites produced by host plants.
Although plants may seem like passive creatures, they are in fact engaged in a constant battle against the parasitic fungi that attack them. To combat these fungal foes, plants produce small molecules that act like chemical weapons and kill the parasite. However, the fungi sometimes fight back, often by developing enzymes that can break down the deadly chemicals into harmless products. One class of anti-fungal molecules that has drawn great interest is rocaglates, as they show promise as treatments for cancer and COVID-19. Rocaglates are produced by plants in the Aglaia family and work by targeting the fungal molecule eIF4A which is fundamental for synthesizing proteins. Since proteins perform most of the chemistry necessary for life, one might think that rocaglates could ward off any fungus. But Chen et al. discovered there is in fact a species of fungi that can evade this powerful defense mechanism. After seeing this new-found fungal species successfully growing on Aglaia plants, Chen et al. set out to find how it is able to protect itself from rocoglates. Genetic analysis of the fungus revealed that its eIF4A contained a single mutation that 'blocked' rocaglates from interacting with it. Chen et al. confirmed this effect by engineering a second fungal species (which infects cucumber plants) so that its elF4A protein contained the mutation found in the new fungus. Fungi with the mutated eIF4A thrived on cucumber leaves treated with a chemical derived from rocaglates, whereas fungi with the non-mutated version were less successful. These results shed new light on the constant 'arms race' between plants and their fungal parasites, with each side evolving more sophisticated ways to overcome the other's defenses. Chen et al. hope that identifying the new rocaglate-resistant eIF4A mutation will help guide the development and use of any therapies based on rocaglates. Further work investigating how often the mutation occurs in humans will also be important for determining how effective these therapies will be.
Asunto(s)
Aglaia , Hypocreales , Parásitos , Animales , Sustitución de Aminoácidos , MutaciónRESUMEN
Since many human diseases are caused by the unwelcome production of harmful proteins, compounds that selectively suppress protein synthesis should provide a unique path for drug development, expanding the druggable proteome. Although surveying the RNA/amino acid contexts that are preferentially affected by translation inhibitors has presented an analytic hurdle, the application of a technique termed ribosome profiling overcomes this problem. Indeed, this technique uncovers the selectivity of translation repression by small molecules such as chloramphenicol, macrolides, PF846, and rocaglates. The molecular understanding of how the compounds inspire context selectivity, despite their targeting to general translation machinery, facilitates rational drug design and discovery for therapeutic purposes.
Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Humanos , Proteínas/metabolismo , ARN/metabolismo , Ribosomas/metabolismoRESUMEN
The cerebral cortex is formed by diverse neurons generated sequentially from neural stem cells (NSCs). A clock mechanism has been suggested to underlie the temporal progression of NSCs, which is mainly defined by the transcriptome and the epigenetic state. However, what drives such a developmental clock remains elusive. We show that translational control of histone H3 trimethylation in Lys27 (H3K27me3) modifiers is part of this clock. We find that depletion of Fbl, an rRNA methyltransferase, reduces translation of both Ezh2 methyltransferase and Kdm6b demethylase of H3K27me3 and delays the progression of the NSC state. These defects are partially phenocopied by simultaneous inhibition of H3K27me3 methyltransferase and demethylase, indicating the role of Fbl in the genome-wide H3K27me3 pattern. Therefore, we propose that Fbl drives the intrinsic clock through the translational enhancement of the H3K27me3 modifiers that predominantly define the NSC state.