Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111101

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, food additives, pigments, rubber manufacture, and electronic materials. Several studies have shown that ZnO-NPs inhibit cell growth and induce apoptosis by the production of oxidative stress in a variety of human cancer cells. However, the anti-cancer property and molecular mechanism of ZnO-NPs in human gingival squamous cell carcinoma (GSCC) are not fully understood. In this study, we found that ZnO-NPs induced growth inhibition of GSCC (Ca9-22 and OECM-1 cells), but no damage in human normal keratinocytes (HaCaT cells) and gingival fibroblasts (HGF-1 cells). ZnO-NPs caused apoptotic cell death of GSCC in a concentration-dependent manner by the quantitative assessment of oligonucleosomal DNA fragmentation. Flow cytometric analysis of cell cycle progression revealed that sub-G1 phase accumulation was dramatically induced by ZnO-NPs. In addition, ZnO-NPs increased the intracellular reactive oxygen species and specifically superoxide levels, and also decreased the mitochondrial membrane potential. ZnO-NPs further activated apoptotic cell death via the caspase cascades. Importantly, anti-oxidant and caspase inhibitor clearly prevented ZnO-NP-induced cell death, indicating the fact that superoxide-induced mitochondrial dysfunction is associated with the ZnO-NP-mediated caspase-dependent apoptosis in human GSCC. Moreover, ZnO-NPs significantly inhibited the phosphorylation of ribosomal protein S6 kinase (p70S6K kinase). In a corollary in vivo study, our results demonstrated that ZnO-NPs possessed an anti-cancer effect in a zebrafish xenograft model. Collectively, these results suggest that ZnO-NPs induce apoptosis through the mitochondrial oxidative damage and p70S6K signaling pathway in human GSCC. The present study may provide an experimental basis for ZnO-NPs to be considered as a promising novel anti­tumor agent for the treatment of gingival cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Neoplasias Gingivales/metabolismo , Mitocondrias/metabolismo , Nanopartículas/química , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Óxido de Zinc/farmacología , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Encía , Humanos , Queratinocitos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Especies Reactivas de Oxígeno/metabolismo
2.
J Enzyme Inhib Med Chem ; 33(1): 920-935, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29768059

RESUMEN

Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-ß (TGF-ß) activity. PBrP inhibits TGF-ß-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-ß-induced epithelial-mesenchymal transition in epithelial cells. PBrP inhibits TGF-ß signalling by reducing the cell-surface expression of type II TGF-ß receptor (TßRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TßRII turnover and the subsequent reduction of TGF-ß signalling. Because, TGF-ß signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.


Asunto(s)
Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Miosina Tipo V/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirroles/farmacología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Alteromonas/química , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Células HEK293 , Células Hep G2 , Humanos , Visón , Estructura Molecular , Miosina Tipo V/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Pseudomonas/química , Pirroles/química , Pirroles/aislamiento & purificación , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/biosíntesis , Relación Estructura-Actividad , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda