Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Cell ; 84(3): 476-489.e10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211589

RESUMEN

Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation. Similarly, the pioneer TF OCT4 coordinates with PRDM14 to form bivalent enhancers and repress cell differentiation programs in human pluripotent stem cells, suggesting that this may be a common and critical function of pioneer TFs. We propose that pioneer and PRDM TFs coordinate to safeguard cell fate through epigenetic repression mechanisms.


Asunto(s)
Nucleosomas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nucleosomas/genética , Diferenciación Celular/genética , Proteínas del Grupo Polycomb/metabolismo , Epigénesis Genética
2.
Appl Microbiol Biotechnol ; 101(21): 7977-7985, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28914348

RESUMEN

The rise of antibiotic resistant bacteria is posing a serious threat to human health. For example, resistant strains of Pseudomonas aeruginosa have resulted in untreatable and potentially lethal infections in both cystic fibrosis and immunocompromised patients. Due to the growing need for alternative treatment options, bacteriophage, or phage, therapy is gaining considerable attention. While previous studies have demonstrated the effectiveness of phage in combating persistent bacterial infections, there is currently a lack of knowledge regarding the host immunological response following phage exposure. In the present study, the bioresponses of an enhanced in vitro model were characterized following exposure to either DMS3 or PEV2, P. aeruginosa targeting phages. Results demonstrated a PEV2-dependent increase in IL-6 and TNF-α production, but no changes associated with DMS3 exposure. Additionally, following the establishment of an in vitro infection model, DMS3 was found to successfully protect mammalian lung cells from P. aeruginosa. Taken together, the biocompatibility and antibacterial effectiveness distinguish DMS3 bacteriophage as a strong candidate for phage therapy. However, as DMS3 is pilin dependent and bacterial receptor expression varies significantly, this work highlights the necessity of generating phage cocktails.


Asunto(s)
Terapia de Fagos/métodos , Neumonía/prevención & control , Infecciones por Pseudomonas/prevención & control , Fagos Pseudomonas/crecimiento & desarrollo , Fagos Pseudomonas/inmunología , Pseudomonas aeruginosa/virología , Células A549 , Humanos , Inmunidad Innata , Interleucina-6/metabolismo , Modelos Biológicos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/metabolismo
3.
STAR Protoc ; 5(3): 103221, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39083383

RESUMEN

Inducible loss-of-function strategies are crucial for understanding gene function. However, creating inducible, multiple-gene knockout models is challenging and time-consuming. Here, we present a protocol for establishing a doxycycline-inducible CRISPR interference (CRISPRi) system to concurrently silence multiple genes in human induced pluripotent stem cells (hPSCs). We describe the steps for establishing host CRISPRi hPSCs, designing and cloning single-guide RNAs (sgRNAs) into a lentivirus plasmid, and establishing monoclonal CRISPRi hPSC lines transduced with sgRNAs. We also detail the procedures for selecting effective CRISPRi clones. For complete details on the use and execution of this protocol, please refer to Matsui et al.1.


Asunto(s)
Sistemas CRISPR-Cas , Silenciador del Gen , Células Madre Pluripotentes Inducidas , ARN Guía de Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , ARN Guía de Sistemas CRISPR-Cas/genética , Lentivirus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Doxiciclina/farmacología
4.
STAR Protoc ; 5(3): 103233, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133612

RESUMEN

Transcription factor (TF) gene knockout or knockdown experiments provide comprehensive downstream effects on gene regulation. However, distinguishing primary direct effects from secondary effects remains challenging. To assess the direct effect of TF binding events, we present a protocol for establishing a doxycycline (Dox)-inducible CRISPRd system in human pluripotent stem cells (hPSCs). We describe the steps for establishing CRISPRd host hPSCs, designing and preparing single-guide RNA (sgRNA) expression lentivirus vectors, generating CRISPRd hPSCs transduced with sgRNAs, and analyzing CRISPRd TF-block effects by chromatin immunoprecipitation (ChIP)-qPCR. For complete details on the use and execution of this protocol, please refer to Matsui et al.1.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes , Factores de Transcripción , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sistemas CRISPR-Cas/genética , Sitios de Unión , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Doxiciclina/farmacología , Lentivirus/genética
5.
Cell Stem Cell ; 31(10): 1513-1523.e7, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39270642

RESUMEN

The fundamental goal of tissue engineering is to functionally restore or improve damaged tissues or organs. Here we address this in the small bowel using an in vivo xenograft preclinical acute damage model. We investigated the therapeutic capacity of human intestinal organoids (HIOs), which are generated from human pluripotent stem cells (hPSCs), to repair damaged small bowel. We hypothesized that the HIO's cellular complexity would allow it to sustain transmural engraftment. To test this, we developed a rodent injury model where, through luminal delivery, we demonstrated that fragmented HIOs engraft, proliferate, and persist throughout the bowel following repair. Not only was restitution of the mucosal layer observed, but significant incorporation was also observed in the muscularis and vascular endothelium. Further analysis characterized sustained cell type presence within the regenerated regions, retention of proximal regionalization, and the neo-epithelia's function. These findings demonstrate the therapeutic importance of mesenchyme for intestinal injury repair.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Intestino Delgado/citología , Ratones , Regeneración , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda