Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 589(7841): 264-269, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328630

RESUMEN

During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression1, but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.


Asunto(s)
Oocitos/metabolismo , Oogénesis/genética , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Epigénesis Genética , Femenino , Fertilización , Meiosis , Metilación , Ratones , Oocitos/citología , Folículo Ovárico/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
2.
PLoS Genet ; 16(3): e1008676, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214314

RESUMEN

A set of sex chromosomes is required for gametogenesis in both males and females, as represented by sex chromosome disorders causing agametic phenotypes. Although studies using model animals have investigated the functional requirement of sex chromosomes, involvement of these chromosomes in gametogenesis remains elusive. Here, we elicit a germ cell-intrinsic effect of sex chromosomes on oogenesis, using a novel culture system in which oocytes were induced from embryonic stem cells (ESCs) harboring XX, XO or XY. In the culture system, oogenesis using XO and XY ESCs was severely disturbed, with XY ESCs being more strongly affected. The culture system revealed multiple defects in the oogenesis of XO and XY ESCs, such as delayed meiotic entry and progression, and mispairing of the homologous chromosomes. Interestingly, Eif2s3y, a Y-linked gene that promotes proliferation of spermatogonia, had an inhibitory effect on oogenesis. This led us to the concept that male and female gametogenesis appear to be in mutual conflict at an early stage. This study provides a deeper understanding of oogenesis under a sex-reversal condition.


Asunto(s)
Células Germinativas/metabolismo , Oocitos/metabolismo , Cromosoma X , Cromosoma Y , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Femenino , Células Germinativas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Endogámicos , Oocitos/citología , Oocitos/ultraestructura , Oogénesis
3.
Nature ; 539(7628): 299-303, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27750280

RESUMEN

The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture.


Asunto(s)
Oocitos/citología , Oogénesis/fisiología , Células Madre Pluripotentes/citología , Animales , Línea Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Fertilización , Técnicas In Vitro , Masculino , Meiosis , Ratones , Células Madre Embrionarias de Ratones/citología , Oocitos/metabolismo , Oogénesis/genética , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 116(25): 12321-12326, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31147464

RESUMEN

In mammals, most immature oocytes remain dormant in the primordial follicles to ensure the longevity of female reproductive life. A precise understanding of mechanisms underlying the dormancy is important for reproductive biology and medicine. In this study, by comparing mouse oogenesis in vivo and in vitro, the latter of which bypasses the primordial follicle stage, we defined the gene-expression profile representing the dormant state of oocytes. Overexpression of constitutively active FOXO3 partially reproduced the dormant state in vitro. Based on further gene-expression analysis, we found that a hypoxic condition efficiently induced the dormant state in vitro. The effect of hypoxia was severely diminished by disruption of the Foxo3 gene and inhibition of hypoxia-inducible factors. Our findings provide insights into the importance of environmental conditions and their effectors for establishing the dormant state.


Asunto(s)
Proteína Forkhead Box O3/fisiología , Hipoxia/metabolismo , Oocitos/metabolismo , Oogénesis , Animales , Proteína Forkhead Box O3/metabolismo , Ratones , Oocitos/fisiología , Transcriptoma
5.
Dev Growth Differ ; 62(3): 150-157, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32106340

RESUMEN

Guaranteeing the sustainability of gametogenesis is a fundamental issue for perpetuating the species. In the mammalian ovary, sustainability is accomplished by keeping a number of oocytes "stocked" in the dormant state. Despite the evident importance of this state, the mechanisms underlying the oocyte dormancy are not fully understood, although it is presumed that both intrinsic and extrinsic factors are involved. Here, we review environmental factors involved in the regulation of oocyte dormancy. Consideration of the environmental factors illustrates the nature of the ovarian compartment, in which primordial follicles reside. This should greatly improve our understanding of the mechanisms and also assist in reconstitution of the dormant state in culture. Accumulating knowledge on the dormant state of oocytes will contribute to a wide range of research in fields such as developmental biology, reproductive biology and regenerative medicine.


Asunto(s)
Microambiente Celular , Oocitos/citología , Oocitos/metabolismo , Animales , Humanos
6.
Sci Adv ; 5(6): eaav9960, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31249869

RESUMEN

The most immature oocytes remain dormant in primordial follicles in the ovary, ensuring the longevity of female reproductive life. Despite its biological and clinical importance, knowledge of mechanisms regulating the dormant state remains limited. Here, we show that mechanical stress plays a key role in maintaining the dormant state of the oocytes in primordial follicles in mice. Transcriptional and histological analyses revealed that oocytes were compressed by surrounding granulosa cells with extracellular matrix. This environmental state is functionally crucial, as oocytes became activated upon loosening the structure and the dormancy was restored by additional compression with exogenous pressure. The nuclei of oocytes in primordial follicles rotated in response to the mechanical stress. Pausing the rotation triggered activation of oocytes through nuclear export of forkhead box O3 (FOXO3). These results provide insights into the mechanisms by which oocytes are kept dormant to sustain female reproductive life.


Asunto(s)
Núcleo Celular/fisiología , Oocitos/fisiología , Animales , Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Femenino , Proteína Forkhead Box O3/metabolismo , Ratones , Oocitos/metabolismo , Técnicas de Cultivo de Órganos/métodos , Folículo Ovárico/metabolismo , Folículo Ovárico/fisiología , Rotación , Transducción de Señal/fisiología , Estrés Mecánico
7.
Science ; 338(6109): 971-5, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23042295

RESUMEN

Reconstitution of female germ cell development in vitro is a key challenge in reproductive biology and medicine. We show here that female (XX) embryonic stem cells and induced pluripotent stem cells in mice are induced into primordial germ cell-like cells (PGCLCs), which, when aggregated with female gonadal somatic cells as reconstituted ovaries, undergo X-reactivation, imprint erasure, and cyst formation, and exhibit meiotic potential. Upon transplantation under mouse ovarian bursa, PGCLCs in the reconstituted ovaries mature into germinal vesicle-stage oocytes, which then contribute to fertile offspring after in vitro maturation and fertilization. Our culture system serves as a robust foundation for the investigation of key properties of female germ cells, including the acquisition of totipotency, and for the reconstitution of whole female germ cell development in vitro.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Oocitos/citología , Folículo Ovárico/citología , Animales , Técnicas de Cultivo de Célula , Proteínas Cromosómicas no Histona , Femenino , Fertilización In Vitro , Masculino , Ratones , Oocitos/trasplante , Oogénesis , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda