Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Planta Med ; 90(4): 256-266, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38040033

RESUMEN

Hyperglycemia is a potent risk factor for the development and progression of diabetes-induced nephropathy. Dendropanoxide (DPx) is a natural compound isolated from Dendropanax morbifera (Araliaceae) that exerts various biological effects. However, the role of DPx in hyperglycemia-induced renal tubular cell injury remains unclear. The present study explored the protective mechanism of DPx on high glucose (HG)-induced cytotoxicity in kidney tubular epithelial NRK-52E cells. The cells were cultured with normal glucose (5.6 mM), HG (30 mM), HG + metformin (10 µM), or HG + DPx (10 µM) for 48 h, and cell cycle and apoptosis were analyzed. Malondialdehyde (MDA), advanced glycation end products (AGEs), and reactive oxygen species (ROS) were measured. Protein-based nephrotoxicity biomarkers were measured in both the culture media and cell lysates. MDA and AGEs were significantly increased in NRK-52E cells cultured with HG, and these levels were markedly reduced by pretreatment with DPx or metformin. DPx significantly reduced the levels of kidney injury molecule-1 (KIM-1), pyruvate kinase M2 (PKM2), selenium-binding protein 1 (SBP1), or neutrophil gelatinase-associated lipocalin (NGAL) in NRK-52E cells cultured under HG conditions. Furthermore, treatment with DPx significantly increased antioxidant enzyme activity. DPx protects against HG-induced renal tubular cell damage, which may be mediated by its ability to inhibit oxidative stress through the protein kinase B/mammalian target of the rapamycin (AKT/mTOR) signaling pathway. These findings suggest that DPx can be used as a new drug for the treatment of high glucose-induced diabetic nephropathy.


Asunto(s)
Hiperglucemia , Metformina , Triterpenos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Glucosa/toxicidad , Estrés Oxidativo , Transducción de Señal , Antioxidantes/farmacología , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Metformina/metabolismo , Metformina/farmacología , Células Epiteliales/metabolismo
2.
Toxicol Mech Methods ; 33(6): 437-451, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36718047

RESUMEN

Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Silimarina , Ratas , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Ratas Sprague-Dawley , Cloruro de Cadmio/toxicidad , Cloruro de Cadmio/metabolismo , Hígado , Estrés Oxidativo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Superóxido Dismutasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología
3.
Anticancer Res ; 44(3): 1051-1062, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423668

RESUMEN

BACKGROUND/AIM: Evidence supports that use of aripiprazole sensitizes drug-resistant oral cancer cells. The aim of the study was to investigate whether aripiprazole can achieve sensitization of highly drug-resistant breast cancer cells, as well as identify its relevant mechanisms of action. MATERIALS AND METHODS: MCF-7/ADR, KB, and KBV20C breast cancer cells were treated with aripiprazole, vincristine (VIC), vinorelbine, vinblastine and their combination. Cell viability assay, annexin V analyses, cellular morphology and density observation with a microscope, western-blotting, fluorescence-activated cell sorting (FACS), and analysis for P-gp inhibitory activity were performed to investigate the drugs' mechanism of action. RESULTS: We found that high drug resistance in MCF-7/ADR cells results from high P-gp inhibitory activity via overexpression of P-gp. Aripiprazole reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. Furthermore, we demonstrated that co-treatment with vinorelbine and vinblastine increased the sensitization of MCF-7/ADR breast cancer cells to aripiprazole. We confirmed that VIC-aripiprazole combination has much higher sensitization effects than either VIC-thioridazine or VIC-trifluoperazine co-treatment in MCF-7/ADR cells, since the previously known bipolar drugs (thioridazine and trifluoperazine) has lower P-gp inhibitory activity. However, aripiprazole-induced sensitization was not observed in VIC-treated MDA-MB-231 breast cancer cells suggesting that combination therapy with aripiprazole is specific for P-gp-overexpressing drug-resistant breast cancer cells. CONCLUSION: Co-treatment with low doses of aripiprazole sensitized MCF-7/ADR cells to VIC. Combination therapy with aripiprazole may be a valuable tool for delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant breast cancer cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Neoplasias de la Mama , Humanos , Femenino , Vincristina/farmacología , Aripiprazol/farmacología , Vinorelbina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Vinblastina/farmacología , Células MCF-7 , Tioridazina/farmacología , Trifluoperazina/farmacología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Subfamilia B de Transportador de Casetes de Unión a ATP , Doxorrubicina/farmacología
4.
Anticancer Res ; 43(3): 1103-1112, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36854528

RESUMEN

BACKGROUND/AIM: Co-treatment with calcineurin inhibitors, such as tacrolimus and cyclosporin A, can sensitize chemotherapy-resistant cancer cells with P-glycoprotein (P-gp)-over-expression. Pimecrolimus (PIME) is a clinically available calcineurin inhibitor with a structure similar to that of tacrolimus. Whether PIME can sensitize P-gp-over-expressing resistant cancer cells remains unclear. MATERIALS AND METHODS: Cell viability assay, annexin V analyses, cellular morphology and density observation with a microscope, western-blotting, fluorescence-activated cell sorting (FACS), and analysis for P-gp inhibitory activity were performed to investigate the mechanism of action. RESULTS: PIME exhibited strong cytotoxicity to vincristine (VIC)-treated drug-resistant cell lines (KBV20C and MCF-7/ADR) over-expressing P-gp. Co-treatment with VIC and PIME increased apoptosis and down-regulated the ERK signaling pathway, resulting in G2 arrest. PIME could be co-administered with vinorelbine or eribulin to sensitize resistant KBV20C or MCF-7/ADR cancer cells. Moreover, PIME strongly inhibited the efflux of both rhodamine 123 and calcein-AM substrates through P-gp after 4 h of treatment, indicating that VIC+PIME sensitized cancer cells by inhibiting VIC efflux via direct PIME binding to P-gp. Low doses of PIME, tacrolimus, and cyclosporin A showed similar sensitizing efficiencies in resistant KBV20C cells. These drugs showed similar P-gp inhibitory activities using both rhodamine 123 and calcein-AM substrates, suggesting that calcineurin inhibitors generally have strong P-gp inhibitory activities that sensitize drug-resistant cancer cells with P-gp over-expression. CONCLUSION: PIME, currently used in clinics, can be repositioned for treating patients with P-gp-over-expressing resistant cancer (stem) cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Inhibidores de la Calcineurina , Neoplasias , Tacrolimus , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Inhibidores de la Calcineurina/farmacología , Ciclosporina/farmacología , Rodamina 123 , Tacrolimus/análogos & derivados , Tacrolimus/farmacología
5.
In Vivo ; 36(5): 2105-2115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36099094

RESUMEN

BACKGROUND/AIM: Few studies have examined the correlation between pyruvate kinase M2 (PKM2) overexpression and triple-negative breast cancer (TNBC). TNBC is considered incurable with the currently available treatments, highlighting the need for alternative therapeutic targets. MATERIALS AND METHODS: PKM2 expression was examined immunohistochemically in human breast tumor samples. Furthermore, we studied the effect of three PKM2 inhibitors (gliotoxin, shikonin, and compound 3K) in the MDA-MB-231 TNBC cell line. RESULTS: PKM2 overexpression correlates with TNBC. Interestingly, most TNBC tissues showed increased levels of PKM2 compared to those of receptor-positive breast cancer tissues. This suggests that PKM2 overexpression is an important factor in the development of TNBC. MDA-MB-231 TNBC cells are resistant to anticancer drugs, such as vincristine (VIC) compared to other cancer cells. We found that the recently developed PKM2 inhibitor gliotoxin sensitized MDA-MB-231 cells at a relatively low dose to the same extent as the known PKM2 inhibitor shikonin, suggesting that PKM2 inhibitors could be an effective treatment for TNBC. Detailed sensitization mechanisms were also analyzed. Both gliotoxin and shikonin highly increased late apoptosis in MDA-MB-231 cells, as revealed by annexin V staining. However, MDA-MB-231 cells with high cellular density inhibited the sensitizing effect of PKM2 inhibitors; therefore, we investigated ways to overcome this inhibitory effect. We found that gliotoxin+shikonin co-treatment highly increased toxicity in MDA-MB-231 cells with high density, whereas either VIC+gliotoxin or VIC+shikonin were not effective. Thus, combination therapy with various PKM2 inhibitors may be more effective than combination therapy with anticancer drugs. Gliotoxin+shikonin co-treatment did not increase S or G2 arrest in cells, suggesting that the co-treatment showed a high increase in apoptosis without S or G2 arrest. We confirmed that another recently developed PKM2 inhibitor compound 3K had similar mechanisms of sensitizing MDA-MB-231 cells, suggesting that PKM2 inhibitors have similar sensitization mechanisms in TNBC. CONCLUSION: PKM2 is a regulator of the oncogenic function of TNBC, and combination therapy with various PKM2 inhibitors may be effective for high-density TNBC. Targeting PKM2 in TNBC lays the foundation for the development of PKM2 inhibitors as promising anti-TNBC agents.


Asunto(s)
Antineoplásicos , Gliotoxina , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Gliotoxina/uso terapéutico , Humanos , Naftoquinonas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Ácido Pirúvico/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda