Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Hum Mol Genet ; 32(16): 2611-2622, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37364055

RESUMEN

Complex I (CI) deficiency in mitochondrial oxidative phosphorylation (OXPHOS) is the most common cause of mitochondrial diseases, and limited evidence-based treatment options exist. Although CI provides the most electrons to OXPHOS, complex II (CII) is another entry point of electrons. Enhancement of this pathway may compensate for a loss of CI; however, the effects of boosting CII activity on CI deficiency are unclear at the animal level. 5-Aminolevulinic acid (5-ALA) is a crucial precursor of heme, which is essential for CII, complex III, complex IV (CIV) and cytochrome c activities. Here, we show that feeding a combination of 5-ALA hydrochloride and sodium ferrous citrate (5-ALA-HCl + SFC) increases ATP production and suppresses defective phenotypes in Drosophila with CI deficiency. Knockdown of sicily, a Drosophila homolog of the critical CI assembly protein NDUFAF6, caused CI deficiency, accumulation of lactate and pyruvate and detrimental phenotypes such as abnormal neuromuscular junction development, locomotor dysfunctions and premature death. 5-ALA-HCl + SFC feeding increased ATP levels without recovery of CI activity. The activities of CII and CIV were upregulated, and accumulation of lactate and pyruvate was suppressed. 5-ALA-HCl + SFC feeding improved neuromuscular junction development and locomotor functions in sicily-knockdown flies. These results suggest that 5-ALA-HCl + SFC shifts metabolic programs to cope with CI deficiency. Bullet outline 5-Aminolevulinic acid (5-ALA-HCl + SFC) increases ATP production in flies with complex I deficiency.5-ALA-HCl + SFC increases the activities of complexes II and IV.5-ALA-HCl + SFC corrects metabolic abnormalities and suppresses the detrimental phenotypes caused by complex I deficiency.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades de la Piel , Animales , Ácido Aminolevulínico/farmacología , Drosophila/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Lactatos , Adenosina Trifosfato , Piruvatos
2.
Hum Mol Genet ; 30(21): 1955-1967, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34137825

RESUMEN

Accumulation of microtubule-associated tau protein is thought to cause neuron loss in a group of neurodegenerative diseases called tauopathies. In diseased brains, tau molecules adopt pathological structures that propagate into insoluble forms with disease-specific patterns. Several types of posttranslational modifications in tau are known to modulate its aggregation propensity in vitro, but their influence on tau accumulation and toxicity at the whole-organism level has not been fully elucidated. Herein, we utilized a series of transgenic Drosophila models to compare systematically the toxicity induced by five tau constructs with mutations or deletions associated with aggregation, including substitutions at seven disease-associated phosphorylation sites (S7A and S7E), deletions of PHF6 and PHF6* sequences (ΔPHF6 and ΔPHF6*), and substitutions of cysteine residues in the microtubule binding repeats (C291/322A). We found that substitutions and deletions resulted in different patterns of neurodegeneration and accumulation, with C291/322A having a dramatic effect on both tau accumulation and neurodegeneration. These cysteines formed disulfide bonds in mouse primary cultured neurons and in the fly retina, and stabilized tau proteins. Additionally, they contributed to tau accumulation under oxidative stress. We also found that each of these cysteine residues contributes to the microtubule polymerization rate and microtubule levels at equilibrium, but none of them affected tau binding to polymerized microtubules. Since tau proteins expressed in the Drosophila retina are mostly present in the early stages of tau filaments self-assembly, our results suggest that disulfide bond formation by these cysteine residues could be attractive therapeutic targets.


Asunto(s)
Agregación Patológica de Proteínas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Drosophila , Microtúbulos/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Unión Proteica , Multimerización de Proteína , Tauopatías/etiología , Tauopatías/patología , Proteínas tau/genética
3.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293064

RESUMEN

Neuronal aging and neurodegenerative diseases are accompanied by proteostasis collapse, while cellular factors that trigger it are not identified. Impaired mitochondrial transport in the axon is another feature of aging and neurodegenerative diseases. Using Drosophila, we found that genetic depletion of axonal mitochondria causes dysregulation of translation and protein degradation. Axons with mitochondrial depletion showed abnormal protein accumulation, and autophagic defects. Lowering neuronal ATP levels by blocking glycolysis did not reduce autophagy, suggesting that autophagic defects are associated with mitochondrial distribution. We found eIF2ß was upregulated by depletion of axonal mitochondria via proteome analysis. Phosphorylation of eIF2α, another subunit of eIF2, was lowered, and global translation was suppressed. Neuronal overexpression of eIF2ß phenocopied the autophagic defects and neuronal dysfunctions, and lowering eIF2ß expression rescued those perturbations caused by depletion of axonal mitochondria. These results indicate the mitochondria-eIF2ß axis maintains proteostasis in the axon, of which disruption may underly the onset and progression of age-related neurodegenerative diseases.

4.
FEBS Open Bio ; 12(1): 295-305, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854258

RESUMEN

Declines in mitochondrial functions are associated with aging. The combination of 5-aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) improves mitochondrial functions in cultured cells. In this study, we investigated the effects of dietary supplementation with 5-ALA and SFC (5-ALA/SFC) on the healthspan and life span of Drosophila melanogaster. Adult Drosophila fruit flies were fed cornmeal food containing various concentrations of 5-ALA/SFC. Locomotor functions, life span, muscle architecture, and age-associated changes in mitochondrial function were analyzed. We found that feeding 5-ALA/SFC mitigated age-associated declines in locomotor functions and extended organismal life span. Moreover, 5-ALA/SFC preserved muscle architecture and maintained the mitochondrial membrane potential in aged animals. Since 5-ALA phosphate/SFC is used as a human dietary supplement, our results suggest that it could be used to slow the age-related declines in muscle functions, prevent age-associated clinical conditions such as frailty, and extend healthspan and life span.


Asunto(s)
Ácido Aminolevulínico , Drosophila , Ácido Aminolevulínico/farmacología , Animales , Ácido Cítrico , Drosophila melanogaster , Compuestos Ferrosos , Músculos
5.
Neurobiol Aging ; 71: 255-264, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30172839

RESUMEN

Abnormal accumulation of the microtubule-associated protein tau is thought to cause neuronal cell death in a group of age-associated neurodegenerative disorders. Tau is phosphorylated at multiple sites in diseased brains, and phosphorylation of tau at Ser262 initiates tau accumulation and toxicity. In this study, we sought to identify novel factors that affect the metabolism and toxicity of tau phosphorylated at Ser262 (pSer262-tau). A biased screen using a Drosophila model of tau toxicity revealed that knockdown of S6K, the Drosophila homolog of p70S6K1, increased the level of pSer262-tau and enhanced tau toxicity. S6K can be activated by the insulin signaling, however, unlike knockdown of S6K, knockdown of insulin receptor or insulin receptor substrate nonselectively decreased total tau levels via autophagy. Importantly, activation of S6K significantly suppressed tau-mediated axon degeneration, whereas manipulation of either the insulin signaling pathway or autophagy did not. Our results suggest that activation of S6K may be an effective therapeutic strategy for selectively decreasing the levels of toxic tau species and suppressing neurodegeneration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia , Modelos Animales de Enfermedad , Drosophila melanogaster , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda