Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Drug Metab Dispos ; 51(7): 851-861, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37055191

RESUMEN

Advancement of endogenous biomarkers for drug transporters as a tool for assessing drug-drug interactions (DDIs) depends on initial identification of biomarker candidates and relies heavily on biomarker validation and its response to reference inhibitors in vivo. To identify endogenous biomarkers of breast cancer resistance protein (BCRP), we applied metabolomic approaches to profile plasma from Bcrp-/-, multidrug resistance protein (Mdr)1a/1b-/-, and Bcrp/Mdr1a/1b-/- mice. Approximately 130 metabolites were significantly altered in Bcrp and P-glycoprotein (P-gp) knockout mice, indicating numerous metabolite-transporter interactions. We focused on BCRP-specific substrates and identified riboflavin, which was significantly elevated in the plasma of Bcrp single- and Bcrp/P-gp double- but not P-gp single-knockout mice. Dual BCRP/P-gp inhibitor elacridar caused a dose-dependent increase of the area under the plasma concentration-time curve (AUC) of riboflavin in mice (1.51- and 1.93-fold increases by 30 and 150 mg/kg elacridar, respectively). In three cynomolgus monkeys, we observed approximately 1.7-fold increases in the riboflavin concentrations caused by ML753286 (10 mg/kg), which correlated well with the increase of sulfasalazine, a known BCRP probe in monkeys. However, the BCRP inhibitor had no effect on isobutyryl carnitine, arginine, or 2-arachidonoyl glycerol levels. Additionally, clinical studies on healthy volunteers indicated low intrasubject and intermeal variability of plasma riboflavin concentrations. In vitro experiments using membrane vesicles demonstrated riboflavin as a select substrate of monkey and human BCRP over P-gp. Collectively, this proof-of-principle study indicates that riboflavin is a suitable endogenous probe for BCRP activity in mice and monkeys and that future investigation of riboflavin as a blood-based biomarker of human BCRP is warranted. SIGNIFICANCE STATEMENT: Our results identified riboflavin as an endogenous biomarker candidate of BCRP. Its selectivity, sensitivity, and predictivity regarding BCRP inhibition have been explored. The findings of this study highlight riboflavin as an informative BCRP plasma biomarker in animal models. The utility of this biomarker requires further validation by evaluating the effects of BCRP inhibitors of different potencies on riboflavin plasma concentrations in humans. Ultimately, riboflavin may shed light on the risk assessment of BCRP DDIs in early clinical trials.


Asunto(s)
Encéfalo , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Encéfalo/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ratones Noqueados , Biomarcadores/metabolismo , Interacciones Farmacológicas , Neoplasias de la Mama/metabolismo
2.
Anal Biochem ; 602: 113766, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32389692

RESUMEN

The S100A1 protein is a target of interest for the treatment of heart failure as it has been previously reported to be depleted in failing cardiomyocytes. A gene therapy approach leading to increased expression levels of the protein directly in the heart could potentially lead to restoration of contractile function and improve overall cell survival. S100A1 is a relatively small soluble protein that is extremely well conserved across species with only a single amino acid difference between the sequences in human and pig, a commonly used pre-clinical model for evaluation of efficacy, biodistribution and safety for cardiac-directed gene therapy approaches. This high homology presents a bioanalytical challenge for the accurate detection and quantitation of both endogenous (pig) and exogenous (human) transduced S100A1 proteins post treatment using a human S100A1 gene therapy in pigs. Here we present a sensitive and selective LC-MS/MS approach that can easily differentiate and simultaneously quantitate both human and pig S100A1 proteins. Additionally, we report on a detailed profiling of S100A1 protein in various pig tissues, a comprehensive evaluation of S100A1 distribution in pig hearts and a comparison to S100A1 levels in human cardiac samples.


Asunto(s)
Técnicas de Transferencia de Gen , Miocitos Cardíacos/química , Proteínas S100/análisis , Proteínas S100/genética , Animales , Cromatografía Liquida , Humanos , Miocitos Cardíacos/metabolismo , Proteínas S100/metabolismo , Porcinos , Espectrometría de Masas en Tándem
3.
Rapid Commun Mass Spectrom ; 34(20): e8896, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32666620

RESUMEN

RATIONALE: High tumor expression of programmed cell death protein (PD1) and programmed death-ligand 1 (PD-L1) is thought to be associated with positive clinical outcomes after treatment with anti-PD1 or anti-PD-L1 agents. Several sensitive methods based on immunohistochemistry, ligand binding assay (LBA), and liquid chromatography/mass spectrometry involving the measurement of PD1 and PD-L1 expression have been reported. Here, we expand on the characterization of different tumor types using a highly specific, sensitive, and robust immunoaffinity liquid chromatography/tandem mass spectrometry (IA-LC/MS/MS)-based method for the simultaneous quantitation of PD1 and PD-L1 in tumor tissues. METHODS: Human tumor tissue samples were homogenized using a Precellys Evolution homogenizer. The samples were incubated with anti-PD1 and anti-PD-L1 capture polyclonal antibodies, which were bound to magnetic beads. Following enrichment, samples were digested with trypsin. A Waters iKEY HSS T3 1.8 um (150 µm × 100 mm) column with a gradient flow rate of 3 µL/min was used for chromatographic separation, and a Waters TQ-S triple quadrupole mass spectrometer was used for detection. Selected reaction monitoring (SRM) transitions with unit resolution for precursor/product ion masses were optimized for PD1 and PD-L1 surrogate peptides. RESULTS: The surrogate peptides LAAFPEDR for PD1 and FTVTVPK for PD-L1 yielded the most intense SRM transitions at m/z 459.7 > 516.2 and m/z 396.2 > 543.3, respectively, and thus were selected for the quantitation of PD1 and PD-L1. The lower limit of quantitation for PD1 and PD-L1 was 0.062 ng/mL with an assay range up to 10 ng/mL. Using this method, human PD1 and PD-L1 were detected and quantified from four different types of tumor tissues. The data show that PD1 expression level was highly correlated with that of PD-L1 in all tumor tissues analyzed here. CONCLUSIONS: A highly specific and sensitive immunoaffinity microflow LC/MS/MS method for the simultaneous quantification of PD1 and PD-L1 in tumor tissues was developed and implemented. This method combines the advantage of immuno-capture for analyte enrichment with the high specificity of detection of multiple surrogate peptides by LC/MS/MS. The quantification of PD1 and PD-L1 co-expression in tumor could help evaluate their role in assessing tumor type selection and patient stratification.


Asunto(s)
Antígeno B7-H1/análisis , Cromatografía Liquida/métodos , Neoplasias/química , Receptor de Muerte Celular Programada 1/análisis , Espectrometría de Masas en Tándem/métodos , Anticuerpos , Calibración , Humanos
4.
J Pharmacol Exp Ther ; 368(1): 136-145, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30361237

RESUMEN

Plasma pyridoxic acid (PDA) and homovanillic acid (HVA) were recently identified as novel endogenous biomarkers of organic anion transporter (OAT) 1/3 function in monkeys. Consequently, this clinical study assessed the dynamic changes and utility of plasma PDA and HVA as an initial evaluation of OAT1/3 inhibition in early-phase drug development. The study was designed as a single-dose randomized, three-phase, crossover study; 14 Indian healthy volunteers received probenecid (PROB) (1000 mg orally) alone, furosemide (FSM) (40 mg orally) alone, or FSM 1 hour after receiving PROB (40 and 1000 mg orally) on days 1, 8, and 15, respectively. PDA and HVA plasma concentrations remained stable over time in the prestudy and FSM groups. Administration of PROB significantly increased the area under the plasma concentration-time curve (AUC) of PDA by 3.1-fold (dosed alone; P < 0.05), and 3.2-fold (coadministered with FSM; P < 0.01), compared with the prestudy and FSM groups, respectively. The corresponding increase in HVA AUC was 1.8-fold (P > 0.05) and 2.1-fold (P < 0.05), respectively. The increases in PDA AUC are similar to those in FSM AUC, whereas those of HVA are smaller (3.1-3.2 and 1.8-2.1 vs. 3.3, respectively). PDA and HVA renal clearance (CL R) values were decreased by PROB to smaller extents compared with FSM (0.35-0.37 and 0.67-0.73 vs. 0.23, respectively). These data demonstrate that plasma PDA is a promising endogenous biomarker for OAT1/3 function and that its plasma exposure responds in a similar fashion to FSM upon OAT1/3 inhibition by PROB. The magnitude and variability of response in PDA AUC and CL R values between subjects is more favorable relative to HVA.


Asunto(s)
Proteína 1 de Transporte de Anión Orgánico/fisiología , Transportadores de Anión Orgánico Sodio-Independiente/fisiología , Ácido Piridóxico/sangre , Adolescente , Adulto , Biomarcadores/sangre , Estudios Cruzados , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
5.
Anal Biochem ; 568: 41-50, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605634

RESUMEN

Apelin, the endogenous ligand for the APJ receptor, has generated interest due to its beneficial effects on the cardiovascular system. Synthesized as a 77 amino acid preproprotein, apelin is post-translationally cleaved to a series of shorter peptides. Though (Pyr)1apelin-13 represents the major circulating form in plasma, it is highly susceptible to proteolytic degradation and has an extremely short half-life, making it challenging to quantify. Literature reports of apelin levels in rodents have historically been determined with commercial ELISA kits which suffer from a lack of selectivity, recognizing a range of active and inactive isoforms of apelin peptide. (Pyr)1apelin-13 has demonstrated beneficial hemodynamic effects in humans, and we wished to evaluate if similar effects could be measured in pre-clinical models. Despite development of a highly selective LC/MS/MS method, in rodent studies where (Pyr)1apelin-13 was administered exogenously the peptide was not detectable until a detailed stabilization protocol was implemented during blood collection. Further, the inherent high clearance of (Pyr)1apelin-13 required an extended release delivery system to enable chronic dosing. The ability to deliver sustained doses and stabilize (Pyr)1apelin-13 in plasma allowed us to demonstrate for the first time the link between systemic concentration of apelin and its pharmacological effects in animal models.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/farmacocinética , Péptidos/análisis , Animales , Cromatografía Liquida , Perros , Ensayo de Inmunoadsorción Enzimática , Hemodinámica , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Péptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
6.
Drug Metab Dispos ; 46(2): 178-188, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29162614

RESUMEN

Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted.


Asunto(s)
Biomarcadores/sangre , Ácido Homovanílico/sangre , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ácido Piridóxico/sangre , Animales , Transporte Biológico/fisiología , Línea Celular , Células HEK293 , Humanos , Macaca fascicularis , Metabolómica/métodos , Probenecid/metabolismo
7.
Anal Chem ; 89(9): 5115-5123, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28383906

RESUMEN

We demonstrate a novel strategy using affinity extraction (AE) LC-MS to directly measure drug exposure and target engagement, two critical pharmacological questions, with a single assay. The assay measures total drug and target concentration at the site of therapeutic action, as well as the amount of target bound to drug. The case study presented applies the strategy to measure drug engagement of a membrane bound receptor (CD40) that is critical to immune regulation in colon biopsies collected from monkey dosed with an anti-CD40 antibody. Unlike other techniques that measure receptor occupancy, such as flow cytometry, this technique does not rely on viable cells allowing measurement of frozen samples in a remote setting from the clinic.


Asunto(s)
Anticuerpos/análisis , Antígenos CD40/análisis , Colon/química , Membrana Mucosa/química , Animales , Anticuerpos/inmunología , Antígenos CD40/inmunología , Cromatografía de Afinidad/métodos , Humanos , Macaca fascicularis , Ratas , Espectrometría de Masas en Tándem/métodos
8.
J Pharmacol Exp Ther ; 358(3): 397-404, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27317801

RESUMEN

In the present study, an open-label, three-treatment, three-period clinical study of rosuvastatin (RSV) and rifampicin (RIF) when administered alone and in combination was conducted in 12 male healthy subjects to determine if coproporphyrin I (CP-I) and coproporphyrin III (CP-III) could serve as clinical biomarkers for organic anion transporting polypeptide 1B1 (OATP1B1) and 1B3 that belong to the solute carrier organic anion gene subfamily. Genotyping of the human OATP1B1 gene was performed in all 12 subjects and confirmed absence of OATP1B1*5 and OATP1B1*15 mutations. Average plasma concentrations of CP-I and CP-III prior to drug administration were 0.91 ± 0.21 and 0.15 ± 0.04 nM, respectively, with minimum fluctuation over the three periods. CP-I was passively eliminated, whereas CP-III was actively secreted from urine. Administration of RSV caused no significant changes in the plasma and urinary profiles of CP-I and CP-III. RIF markedly increased the maximum plasma concentration (Cmax) of CP-I and CP-III by 5.7- and 5.4-fold (RIF) or 5.7- and 6.5-fold (RIF+RSV), respectively, as compared with the predose values. The area under the plasma concentration curves from time 0 to 24 h (AUC0-24h) of CP-I and CP-III with RIF and RSV increased by 4.0- and 3.3-fold, respectively, when compared with RSV alone. In agreement with this finding, Cmax and AUC0-24h of RSV increased by 13.2- and 5.0-fold, respectively, when RIF was coadministered. Collectively, we conclude that CP-I and CP-III in plasma and urine can be appropriate endogenous biomarkers specifically and reliably reflecting OATP inhibition, and thus the measurement of these molecules can serve as a useful tool to assess OATP drug-drug interaction liabilities in early clinical studies.


Asunto(s)
Coproporfirinas/sangre , Coproporfirinas/orina , Transportadores de Anión Orgánico/antagonistas & inhibidores , Rifampin/farmacología , Rosuvastatina Cálcica/farmacología , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Interacciones Farmacológicas , Humanos , Masculino , Persona de Mediana Edad , Rifampin/farmacocinética , Rosuvastatina Cálcica/farmacocinética , Adulto Joven
9.
Anal Biochem ; 503: 71-8, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27033006

RESUMEN

The growing field of biomarker bioanalysis by liquid chromatography mass spectrometry (LC-MS) is challenged with the selection of suitable matrices to construct relevant and valid calibration curves resulting in not only precise but also accurate data. Because surrogate matrices are often employed with the associated concerns about the accuracy of the obtained data, here we present an assay using surrogate analytes in naive biological matrices. This approach is illustrated with the analysis of endogenous bile acids (e-BAs) in serum and plasma using stable isotope-labeled (SIL) analogues as calibration standards to address the matrix concerns. Several deuterated BAs (d-BAs) were used as standards representing respectively grouped e-BAs with structural similarity allowing for the simultaneous bioanalysis of 16 e-BA. The utility of this LC-MS assay employing d-BAs is demonstrated with the analysis of samples resultant of a controlled metabolomics study where a cohort of rats was fed/fasted to investigate the change of e-BAs dependent on food consumption and fasting time.


Asunto(s)
Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Marcaje Isotópico , Metabolómica , Animales , Ácidos y Sales Biliares/química , Cromatografía Liquida , Humanos , Espectrometría de Masas , Estructura Molecular , Ratas
10.
Amino Acids ; 47(3): 603-15, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534430

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a globally widespread disease of increasing clinical significance. The pathological progression of the disease from simple steatosis to nonalcoholic steatohepatitis (NASH) has been well defined, however, the contribution of altered branched chain amino acid metabolomic profiles to the progression of NAFLD is not known. The three BCAAs: leucine, isoleucine and valine are known to mediate activation of several important hepatic metabolic signaling pathways ranging from insulin signaling to glucose regulation. The purpose of this study is to profile changes in hepatic BCAA metabolite levels with transcriptomic changes in the progression of human NAFLD to discover novel mechanisms of disease progression. Metabolomic and transcriptomic data sets representing the spectrum of human NAFLD (normal, steatosis, NASH fatty, and NASH not fatty livers) were utilized for this study. During the transition from steatosis to NASH, increases in the levels of leucine (127% of normal), isoleucine (139%), and valine (147%) were observed. Carnitine metabolites also exhibited significantly elevated profiles in NASH fatty and NASH not fatty samples and included propionyl, hexanoyl, lauryl, acetyl and butyryl carnitine. Amino acid and BCAA metabolism gene sets were significantly enriched among downregulated genes during NASH. These cumulative alterations in BCAA metabolite and amino acid metabolism gene profiles represent adaptive physiological responses to disease-induced hepatic stress in NASH patients.


Asunto(s)
Isoleucina/metabolismo , Leucina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Valina/metabolismo , Carnitina/genética , Carnitina/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Isoleucina/genética , Leucina/genética , Masculino , Metabolómica , Enfermedad del Hígado Graso no Alcohólico/genética , Transducción de Señal/genética , Valina/genética
11.
J Lipid Res ; 55(8): 1784-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24872406

RESUMEN

Lysophosphatidic acids (LPAs) are biologically active signaling molecules involved in the regulation of many cellular processes and have been implicated as potential mediators of fibroblast recruitment to the pulmonary airspace, pointing to possible involvement of LPA in the pathology of pulmonary fibrosis. LPAs have been measured in various biological matrices and many challenges involved with their analyses have been documented. However, little published information is available describing LPA levels in human bronchoalveolar lavage fluid (BALF). We therefore conducted detailed investigations into the effects of extensive sample handling and sample preparation conditions on LPA levels in human BALF. Further, targeted lipid profiling of human BALF and plasma identified the most abundant lysophospholipids likely to interfere with LPA measurements. We present the findings from these investigations, highlighting the importance of well-controlled sample handling for the accurate quantitation of LPA. Further, we show that chromatographic separation of individual LPA species from their corresponding lysophospholipid species is critical to avoid reporting artificially elevated levels. The optimized sample preparation and LC/MS/MS method was qualified using a stable isotope-labeled LPA as a surrogate calibrant and used to determine LPA levels in human BALF and plasma from a Phase 0 clinical study comparing idiopathic pulmonary fibrosis patients to healthy controls.


Asunto(s)
Líquido del Lavado Bronquioalveolar/química , Fibrosis Pulmonar Idiopática/metabolismo , Lisofosfolípidos/metabolismo , Cromatografía Liquida/métodos , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos
12.
Dig Dis Sci ; 59(2): 365-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24048683

RESUMEN

BACKGROUND: The worldwide prevalences of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are estimated to range from 30 to 40 % and 5-17 %, respectively. Hepatocellular carcinoma (HCC) is primarily caused by hepatitis B infection, but retrospective data suggest that 4-29 % of NASH cases will progress to HCC. Currently the connection between NASH and HCC is unclear. AIMS: The purpose of this study was to identify changes in expression of HCC-related genes and metabolite profiles in NAFLD progression. METHODS: Transcriptomic and metabolomic datasets from human liver tissue representing NAFLD progression (normal, steatosis, NASH) were utilized and compared to published data for HCC. RESULTS: Genes involved in Wnt signaling were downregulated in NASH but have been reported to be upregulated in HCC. Extracellular matrix/angiogenesis genes were upregulated in NASH, similar to reports in HCC. Iron homeostasis is known to be perturbed in HCC and we observed downregulation of genes in this pathway. In the metabolomics analysis of hepatic NAFLD samples, several changes were opposite to what has been reported in plasma of HCC patients (lysine, phenylalanine, citrulline, creatine, creatinine, glycodeoxycholic acid, inosine, and alpha-ketoglutarate). In contrast, multiple acyl-lyso-phosphatidylcholine metabolites were downregulated in NASH livers, consistent with observations in HCC patient plasma. CONCLUSIONS: These data indicate an overlap in the pathogenesis of NAFLD and HCC where several classes of HCC related genes and metabolites are altered in NAFLD. Importantly, Wnt signaling and several metabolites are different, thus implicating these genes and metabolites as mediators in the transition from NASH to HCC.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Análisis por Conglomerados , Bases de Datos Genéticas , Hígado Graso/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Metabolómica , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal/genética
13.
J Lipid Res ; 54(9): 2400-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23614904

RESUMEN

Proprotein convertase subtilisin-kexin-9 (PCSK9) inhibition markedly augments the LDL lowering action of statins. The combination is being evaluated for long-term effects on atherosclerotic disease outcomes. However, effects of combined treatment on hepatic cholesterol and bile acid metabolism have not yet been reported. To study this, PCSK9-Y119X mutant (knockout) and wild-type mice were treated with or without atorvastatin for 12 weeks. Atorvastatin progressively lowered plasma LDL in each group, but no differences in liver cholesterol, cholesterol ester, or total bile acid concentrations, or in plasma total bile acid levels were seen. In contrast, atorvastatin increased fecal total bile acids (≈ 2-fold, P < 0.01) and cholesterol concentrations (≈ 3-fold, P < 0.01) versus controls for both PCSK9-Y119X and wild-type mice. All 14 individual bile acids resolved by LC-MS, including primary, secondary, and conjugated species, reflected similar increases. Expression of key liver bile acid synthesis genes CYP7A1 and CYP8B1 were ≈ 2.5-fold higher with atorvastatin in both strains, but mRNA for liver bile acid export and reuptake transporters and conjugating enzymes were not unaffected. The data suggest that hepatocyte cholesterol and bile acid homeostasis is maintained with combined PCSK9 and HMG-CoA reductase inhibition through efficient liver enzymatic conversion of LDL-derived cholesterol into bile acids and excretion of both, with undisturbed enterohepatic recycling.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Proproteína Convertasas/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Colesterol/sangre , Interacciones Farmacológicas , Heces/química , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proproteína Convertasa 9 , Serina Endopeptidasas
14.
Toxicol Appl Pharmacol ; 268(2): 132-40, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23391614

RESUMEN

Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the 'classical' (neutral) and 'alternative' (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hígado Graso/metabolismo , Hígado/efectos de los fármacos , Ácidos y Sales Biliares/análisis , Ácidos y Sales Biliares/genética , Ácidos y Sales Biliares/toxicidad , Análisis por Conglomerados , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Metabolómica , Enfermedad del Hígado Graso no Alcohólico
15.
BMC Pharmacol ; 12: 2, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22475049

RESUMEN

BACKGROUND: Dipeptidylpeptidase 4 (DPP4) inhibitors have clinical benefit in patients with type 2 diabetes mellitus by increasing levels of glucose-lowering incretin hormones, such as glucagon-like peptide -1 (GLP-1), a peptide with a short half life that is secreted for approximately 1 hour following a meal. Since drugs with prolonged binding to their target have been shown to maximize pharmacodynamic effects while minimizing drug levels, we developed a time-dependent inhibitor that has a half-life for dissociation from DPP4 close to the duration of the first phase of GLP-1 release. RESULTS: Saxagliptin and its active metabolite (5-hydroxysaxagliptin) are potent inhibitors of human DPP4 with prolonged dissociation from its active site (Ki = 1.3 nM and 2.6 nM, t1/2 = 50 and 23 minutes respectively at 37°C). In comparison, both vildagliptin (3.5 minutes) and sitagliptin ( < 2 minutes) rapidly dissociated from DPP4 at 37°C. Saxagliptin and 5-hydroxysaxagliptin are selective for inhibition of DPP4 versus other DPP family members and a large panel of other proteases, and have similar potency and efficacy across multiple species.Inhibition of plasma DPP activity is used as a biomarker in animal models and clinical trials. However, most DPP4 inhibitors are competitive with substrate and rapidly dissociate from DPP4; therefore, the type of substrate, volume of addition and final concentration of substrate in these assays can change measured inhibition. We show that unlike a rapidly dissociating DPP4 inhibitor, inhibition of plasma DPP activity by saxagliptin and 5-hydroxysaxagliptin in an ex vivo assay was not dependent on substrate concentration when substrate was added rapidly because saxagliptin and 5-hydroxysaxagliptin dissociate slowly from DPP4, once bound. We also show that substrate concentration was important for rapidly dissociating DPP4 inhibitors. CONCLUSIONS: Saxagliptin and its active metabolite are potent, selective inhibitors of DPP4, with prolonged dissociation from its active site. They also demonstrate prolonged inhibition of plasma DPP4 ex vivo in animal models, which implies that saxagliptin and 5-hydroxysaxagliptin would continue to inhibit DPP4 during rapid increases in substrates in vivo.


Asunto(s)
Adamantano/análogos & derivados , Dipéptidos/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Hipoglucemiantes/metabolismo , Adamantano/metabolismo , Algoritmos , Animales , Artefactos , Clonación Molecular , Dipeptidasas/metabolismo , Dipeptidil Peptidasa 4/sangre , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Indicadores y Reactivos , Cinética , Macaca fascicularis , Nitrilos/metabolismo , Unión Proteica , Pirazinas/metabolismo , Pirrolidinas/metabolismo , Fosfato de Sitagliptina , Especificidad de la Especie , Triazoles/metabolismo , Vildagliptina
16.
Bioanalysis ; 14(5): 267-278, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35195037

RESUMEN

Background: The degree of human hepatocyte replacement in chimeric mice with humanized liver has previously been shown to correlate with human plasma albumin measurements. However, there are no reports that directly compare the remaining endogenous mouse albumin with the newly expressed human albumin following engraftment. To better understand the disposition of serum albumin in PXB-mice, we developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to simultaneously quantitate both human and mouse albumin from plasma. Results: A robust correlation was observed between the serum human albumin levels measured by LC-MS/MS and the estimated replacement index of PXB-mice. Conclusion: All data were shown to be specific and suitable to accurately quantify both human and mouse albumin from plasma of chimeric mice with humanized livers.


Asunto(s)
Albúmina Sérica Humana , Espectrometría de Masas en Tándem , Quimera , Cromatografía Liquida , Hepatocitos , Humanos , Hígado , Espectrometría de Masas en Tándem/métodos
17.
JHEP Rep ; 4(1): 100392, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34977519

RESUMEN

BACKGROUND & AIMS: Increased serum bile acids (BAs) have been observed in patients with non-alcoholic steatohepatitis (NASH). Pegbelfermin (PGBF), a polyethylene glycol-modified (PEGylated) analogue of human fibroblast growth factor 21 (FGF21), significantly decreased hepatic steatosis and improved fibrosis biomarkers and metabolic parameters in patients with NASH in a phase IIa trial. This exploratory analysis evaluated the effect of PGBF on serum BAs and explored potential underlying mechanisms. METHODS: Serum BAs and 7α-hydroxy-4-cholesten-3-one (C4) were measured by HPLC-mass spectrometry (MS) using serum collected in studies of patients with NASH (NCT02413372) and in overweight/obese adults (NCT03198182) who received PGBF. Stool samples were collected in NCT03198182 to evaluate faecal BAs by liquid chromatography (LC)-MS and the faecal microbiome by metagenetic and metatranscriptomic analyses. RESULTS: Significant reductions from baseline in serum concentrations of the secondary BA, deoxycholic acid (DCA), and conjugates, were observed with PGBF, but not placebo, in patients with NASH; primary BA concentrations did not significantly change in any arm. Similar effects of PGBF on BAs were observed in overweight/obese adults, allowing for an evaluation of the effects of PGBF on the faecal microbiome and BAs. Faecal transcriptomic analysis showed that the relative abundance of the gene encoding choloylglycine hydrolase, a critical enzyme for secondary BA synthesis, was reduced after PGBF, but not placebo, administration. Furthermore, a trend of reduction in faecal secondary BAs was observed. CONCLUSIONS: PGBF selectively reduced serum concentrations of DCA and conjugates in patients with NASH and in healthy overweight/obese adults. Reduced choloylglycine hydrolase gene expression and decreased faecal secondary BA levels suggest a potential role for PGBF in modulating secondary BA synthesis by gut microbiome. The clinical significance of DCA reduction post-PGBF treatment warrants further investigation. LAY SUMMARY: Pegbelfermin (PGBF) is a hormone that is currently being studied in clinical trials for the treatment of non-alcoholic fatty liver disease. In this study, we show that PGBF treatment can reduce bile acids that have previously been shown to have toxic effects on the liver. Additional studies to understand how PGBF regulates bile acids may provide additional information about its potential use as a treatment for fatty liver.

18.
Cell Metab ; 34(11): 1732-1748.e5, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323235

RESUMEN

Monoacylglycerol acyltransferase 2 (MGAT2) is an important enzyme highly expressed in the human small intestine and liver for the regulation of triglyceride absorption and homeostasis. We report that treatment with BMS-963272, a potent and selective MGAT2 inhibitor, decreased inflammation and fibrosis in CDAHFD and STAM, two murine nonalcoholic steatohepatitis (NASH) models. In high-fat-diet-treated cynomolgus monkeys, in contrast to a selective diacylglycerol acyltransferase 1 (DGAT1) inhibitor, BMS-963272 did not cause diarrhea. In a Phase 1 multiple-dose trial of healthy human adults with obesity (NCT04116632), BMS-963272 was safe and well tolerated with no treatment discontinuations due to adverse events. Consistent with the findings in rodent models, BMS-963272 elevated plasma long-chain dicarboxylic acid, indicating robust pharmacodynamic biomarker modulation; increased gut hormones GLP-1 and PYY; and decreased body weight in human subjects. These data suggest MGAT2 inhibition is a promising therapeutic opportunity for NASH, a disease with high unmet medical needs.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Obesidad , Animales , Humanos , Ratones , Peso Corporal , Inflamación/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Adulto , Ensayos Clínicos Fase I como Asunto
19.
Chem Res Toxicol ; 24(4): 481-7, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21381695

RESUMEN

The overnight (16-h) fast is one of the most common experimental manipulations performed in rodent studies. Despite its ubiquitous employment, a comprehensive evaluation of metabolomic and transcriptomic sequelae of fasting in conjunction with routine clinical pathology evaluation has not been undertaken. This study assessed the impact of a 16-h fast on urine and serum metabolic profiles, transcript profiles of liver, psoas muscle, and jejunum as well as on routine laboratory clinical pathology parameters. Fasting rats had an approximate 12% relative weight decrease compared to ad libitum fed animals, and urine volume was significantly increased. Fasting had no effect on hematology parameters, though several changes were evident in serum and urine clinical chemistry data. In general, metabolic changes in biofluids were modest in magnitude but broad in extent, with a majority of measured urinary metabolites and from 1/3 to 1/2 of monitored serum metabolites significantly affected. Increases in fatty acids and bile acids dominated the upregulated metabolites. Downregulated serum metabolites were dominated by diet-derived and/or gut-microflora derived metabolites. Major transcriptional changes included genes with roles in fatty acid, carbohydrate, cholesterol, and bile acid metabolism indicating decreased activity in glycolytic pathways and a shift toward increased utilization of fatty acids. Typically, several genes within these metabolic pathways, including key rate limiting genes, changed simultaneously, and those changes were frequently correlative to changes in clinical pathology parameters or metabolomic data. Importantly, up- or down-regulation of a variety of cytochrome P450s, transporters, and transferases was evident. Taken together, these data indicate profound consequences of fasting on systemic biochemistry and raise the potential for unanticipated interactions, particularly when metabolomic or transcriptomic data are primary end points.


Asunto(s)
Ayuno , Perfilación de la Expresión Génica , Metaboloma , Animales , Femenino , Glucosa/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
20.
Chem Res Toxicol ; 24(6): 905-12, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21574629

RESUMEN

The development of compounds with the potential for genotoxicity poses significant safety risks as well as risks of attrition. Although genotoxicity evaluation of the parent molecule is routine and reasonably predictive, assessing the risk of commercialization when release of a genotoxic degradant and/or metabolite from a nongenotoxic parent molecule is suspected is much more challenging and resource intensive. Much of the risk of the formation of a genotoxic degradant/metabolite can be discharged with the conduct of carcinogenicity studies in models where the compound is formed, but this approach requires a great deal of time and resources. In this manuscript, we investigated the contribution of various factors (pH, serum instability, and hepatic metabolism) to the formation of a mutagenic aromatic amine from a potent and highly selective thyromimetic compound ([3-(3,5-dibromo-4-(4-hydroxy-3-isopropyl-5-methylphenoxy)-2-methylphenylamino)-3-oxopropanoic acid], compound 1), under in vitro conditions. The kinetic parameters obtained from in vitro experiments combined with the pharmacokinetics of 1in vivo (e.g., plasma concentration-time profile and clearance) were used to estimate the extent of in vivo formation of [4-(4-amino-2,6-dibromo-3-methylphenoxy)-2-isopropyl-6-methylphenol] (compound 2), in rats upon administration of a single oral dose of 1. The agreement between the predicted values (1.9% conversion of total administered dose) with the observed levels of 2 in rats (0.2%-2.2% of the 10 mg/kg dose, 10 mg/kg) further prompted the utilization of this approach to predict the extent of release of this mutagen in humans upon administration of 1. The projection of 0.13% conversion to 2 from an efficacious daily dose of 15 mg of 1 translated to the generation of 20 µg of 2 and provided the basis for the decision to terminate the development of 1.


Asunto(s)
Aminas/toxicidad , Anilidas/toxicidad , Hidrocarburos Aromáticos/toxicidad , Malonatos/toxicidad , Mutágenos/toxicidad , Hormonas Tiroideas/toxicidad , Aminas/metabolismo , Anilidas/sangre , Anilidas/metabolismo , Animales , Perros , Haplorrinos , Humanos , Hidrocarburos Aromáticos/metabolismo , Concentración de Iones de Hidrógeno , Hígado/metabolismo , Masculino , Malonatos/sangre , Malonatos/metabolismo , Ratones , Modelos Biológicos , Pruebas de Mutagenicidad , Mutágenos/metabolismo , Ratas , Ratas Sprague-Dawley , Suero/metabolismo , Hormonas Tiroideas/sangre , Hormonas Tiroideas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda