Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070933

RESUMEN

Hippocampal damage after traumatic brain injury (TBI) is associated with late posttraumatic conditions, such as depression, cognitive decline and epilepsy. Mechanisms of selective hippocampal damage after TBI are not well understood. In this study, using rat TBI model (lateral fluid percussion cortical injury), we assessed potential association of immediate posttraumatic seizures and changes in corticosterone (CS) levels with neuroinflammation and neuronal cell loss in the hippocampus. Indices of distant hippocampal damage (neurodegeneration and neuroinflammation) were assessed using histological analysis (Nissl staining, Iba-1 immunohistochemical staining) and ELISA (IL-1ß and CS) 1, 3, 7 and 14 days after TBI or sham operation in male Wistar rats (n = 146). IL-1ß was elevated only in the ipsilateral hippocampus on day 1 after trauma. CS peak was detected on day 3 in blood, the ipsilateral and contralateral hippocampus. Neuronal cell loss in the hippocampus was demonstrated bilaterally; in the ipsilateral hippocampus it started earlier than in the contralateral. Microglial activation was evident in the hippocampus bilaterally on day 7 after TBI. The duration of immediate seizures correlated with CS elevation, levels of IL-1ß and neuronal loss in the hippocampus. The data suggest potential association of immediate post-traumatic seizures with CS-dependent neuroinflammation-mediated distant hippocampal damage.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Corticosterona/sangre , Hipocampo/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Animales , Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Recuento de Células , Muerte Celular , Modelos Animales de Enfermedad , Hipocampo/patología , Hipocampo/fisiopatología , Inflamación , Interleucina-1beta/biosíntesis , Masculino , Microglía/patología , Neuronas/patología , Ratas , Ratas Wistar , Convulsiones/patología , Convulsiones/fisiopatología , Factores de Tiempo
2.
Mol Neurobiol ; 59(2): 1151-1167, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34855115

RESUMEN

Time course of changes in neuroinflammatory processes in the dorsal and ventral hippocampus was studied during the early period after lateral fluid percussion-induced neocortical traumatic brain injury (TBI) in the ipsilateral and contralateral hemispheres. In the ipsilateral hippocampus, neuroinflammation (increase in expression of pro-inflammatory cytokines) was evident from day 1 after TBI and ceased by day 14, while in the contralateral hippocampus, it was mainly limited to the dorsal part on day 1. TBI induced an increase in hippocampal corticosterone level on day 3 bilaterally and an accumulation of Il1b on day 1 in the ipsilateral hippocampus. Activation of microglia was observed from day 7 in different hippocampal areas of both hemispheres. Neuronal cell loss was detected in the ipsilateral dentate gyrus on day 3 and extended to the contralateral hippocampus by day 7 after TBI. The data suggest that TBI results in distant hippocampal damage (delayed neurodegeneration in the dentate gyrus and microglia proliferation in both the ipsilateral and contralateral hippocampus), the time course of this damage being different from that of the neuroinflammatory response.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neocórtex , Enfermedades Neuroinflamatorias , Ratas , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular , Proliferación Celular , Citocinas/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , Neocórtex/metabolismo , Enfermedades Neuroinflamatorias/metabolismo
3.
Neurosci Res ; 166: 42-54, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32461140

RESUMEN

Unprovoked seizures in the late period of traumatic brain injury (TBI) occur in almost 20% of humans and experimental animals, psychiatric comorbidities being common in both situations. The aim of the study was to evaluate epileptiform activity in the early period of TBI induced by lateral fluid percussion brain injury in adult male Srague-Dawley rats and to reveal potential behavioral and pathomorphological correlates of early electrophysiological alterations. One week after TBI the group of animals was remarkably heterogeneous regarding the incidence of bifrontal 7-Hz spikes and spike-wave discharges (SWDs). It consisted of 3 typical groups: a) rats with low baseline and high post-craniotomy SWD level; b)with constantly low both baseline and post-craniotomy SWD levels; c) constantly high both baseline and post-craniotomy SWD levels. Rats with augmented SWD occurrence after TBI demonstrated freezing episodes accompanying SWDs as well as increased anxiety-like behavior (difficulty of choosing). The discharges were definitely associated with sleep phases. The incidence of SWDs positively correlated with the area of glial activation in the neocortex but not in the hippocampus.The translational potential of the data is revealing new pathophysiological links between epileptiform activity appearance, direct cortical and distant hippocampal damage and anxiety-like behavior, putative early predictors of late posttraumatic pathology.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Alta del Paciente , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Modelos Animales de Enfermedad , Electroencefalografía , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Convulsiones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda