Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Environ Manage ; 291: 112724, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33962286

RESUMEN

This research investigated two proposed modified biofilm carriers' performances in treating recirculating aquaculture systems (RAS) wastewater under different salinities (12‰, 26‰, and 35‰) for about 92 days. Three moving bed biofilm reactors (MBBRs; R1, R2, and R3) were filled with unmodified novel sponge biocarriers (SB) served as a control, modified novel SB with ferrous oxalate (C2FeO4@SB), and modified novel SB with combined ferrous oxalate and activated carbon (C2FeO4-AC@SB), respectively. Under the highest saline condition, a significantly higher ammonia removal efficiency of 98.86 ± 0.7% (p ˃ 0.05) was obtained in R3, whereas R2 and R1 yielded 95.18 ± 2.8% and 91.66 ± 1.5%, respectively. Microbial analysis showed that Vibrio, Ruegeria, Formosa, Thalassospira, and Denitromonas were predominant genera, strictly halophilic heterotrophic nitrifying bacteria involved in nitrogen removal. In conclusion, the synergistic effects of novel sponge, C2FeO4 and AC accelerated biofilm formations and stability, subsequently enhanced the removal of ammonia from the mariculture RAS wastewater by the C2FeO4-AC@SB carriers in R3.


Asunto(s)
Microbiota , Purificación del Agua , Biopelículas , Reactores Biológicos , Nitrificación , Taiwán , Aguas Residuales/análisis
2.
J Environ Manage ; 275: 111264, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32854050

RESUMEN

In this study, a novel sponge biocarriers (SB) in moving bed bioreactor (MBBR) treating recirculating aquaculture systems wastewater was evaluated for the first time. Two lab-scale MBBRs were operated simultaneously for 116 days under various hydraulic retention times (HRTs). The reactors R1 and R2 were filled with K5 plastic carriers and SB, respectively. From the results, at an optimum HRT of 6 h, ammonia removal efficiency and nitrification rate were 86.67 ± 2.4% and 1.43 mg/L.h for the R1 and, 91.65 ± 1.3% and 1.52 mg/L.h for the R2, respectively. The microbial community analysis showed that the predominant genera in the nitrifying community were Nitrosomonas (AOB) and Nitrospira (NOB) in co-existence with heterotrophic genera Hyphomicrobium, Mesorhizobium, Zhizhongheella, and Klebsiella spp. Modified Stover-Kincannon model examined the ammonia removal kinetics, and the values of kinetic parameters obtained were Umax: 0.909 and 1.111 g/L.d and KB: 0.929 and, 1.108 g/L.d for the R1 and R2, respectively. The correlation coefficients (R2) of the MBBRs were higher than 0.98, indicating that the model adequately described the experimental data. Overall, MBBR, filled with the proposed novel SB operated at 6 h HRT, can achieve the highest nitrification performance and increase the diversity of the functional microbial communities.


Asunto(s)
Microbiota , Aguas Residuales , Amoníaco , Acuicultura , Biopelículas , Reactores Biológicos , Cinética , Nitrificación
3.
Chemosphere ; 330: 138772, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37098362

RESUMEN

Fabricating low-cost and efficient biofilm carriers for moving bed biofilm reactors in wastewater treatment is crucial for achieving environmental sustainability. Herein, a novel sponge biocarrier doped with NaOH-loaded biochar and nano ferrous oxalate (sponge-C2FeO4@NBC) was prepared and evaluated for nitrogenous compounds removal from recirculating aquaculture systems (RAS) wastewater by stepwise increasing ammonium nitrogen (NH4+-N) loading rates. The prepared NBC, sponge-C2FeO4@NBC, and matured biofilms were characterized using SEM, FTIR, BET, and N2 adsorption-desorption techniques. The results reveal that the highest removal rates of NH4+-N reached 99.28 ± 1.3% was yielded by the bioreactor filled with sponge-C2FeO4@NBC, with no obvious nitrite (NO2--N) accumulation in the final phase. The reactor packed with sponge-C2FeO4@NBC biocarrier had the highest relative abundance of functional microorganisms responsible for nitrogen metabolism than in the control reactor, confirmed from 16S rRNA gene sequencing analysis. Our study provides new insights into the newly developed biocarriers for enhancing RAS biofilters treatment performance in keeping water quality within the acceptable level for the rearing of aquatic species.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , ARN Ribosómico 16S , Nitrógeno/metabolismo , Biopelículas , Reactores Biológicos , Acuicultura , Nitrificación
4.
Chemosphere ; 303(Pt 3): 135097, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35636603

RESUMEN

The moving bed bioreactor (MBBR) process has drawn more attention as a promising biological wastewater treatment process. Nevertheless, achieving quick start-up and microbial biofilm formation remains a significant challenge. Consequently, the present study investigated a novel chitosan-based natural sludge (CS@NGS) seeding strategy for the accelerated start-up of MBBR. Three identical bioreactors were employed; the first bioreactor was without sludge seed as the control (BR1), the second was inoculated only with sludge (BR2), and the third was inoculated with CS@NGS according to the proposed seeding method (BR3). All bioreactors were utilised to treat simulated recirculating aquaculture systems (RAS) effluent. Resultantly, the CS@NGS shortened the start-up period from over twenty to seven days due to the enhanced initial microbial adhesion and biofilm formation. Under optimal conditions, the ammonium removal in BR3 approached 100%, which was relatively higher than BR2 (96.35 ± 1.12%) and BR1 (92.56 ± 2.17%). Moreover, a low nitrite accumulation was exhibited in the effluents, approximately ≤0.03 mg L-1. The process performance correlated positively with core bacteria from the genera Nakamurella, Hyphomicrobium, Nitrospira, Paenarthrobacter, Rhodococcus, and Stenotrophobacter. The quantitative polymerase chain reaction (qPCR) results demonstrated that the CS@NGS enhanced the expressions of amoA, nxrB, nirK, nirS, narG, and napA nitrogen metabolism-related functional genes to varying degrees. The present study findings can assist the rapid start-up of aquaculture biofilters utilised to solve high nitrite and ammonia accumulation in recirculated water from industrial RAS.


Asunto(s)
Quitosano , Aguas del Alcantarillado , Acuicultura , Bacterias/metabolismo , Biopelículas , Reactores Biológicos/microbiología , Nitritos/metabolismo , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda