Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36688696

RESUMEN

MOTIVATION: One of the standard methods of high-throughput RNA sequencing analysis is differential expression. However, it does not detect changes in molecular regulation. In contrast to the standard differential expression analysis, differential co-expression one aims to detect pairs or clusters whose mutual expression changes between two conditions. RESULTS: We developed Differential Co-expression Network Analysis (DCoNA)-an open-source statistical tool that allows one to identify pair interactions, which correlation significantly changes between two conditions. Comparing DCoNA with the state-of-the-art analog, we showed that DCoNA is a faster, more accurate and less memory-consuming tool. We applied DCoNA to prostate mRNA/miRNA-seq data collected from The Cancer Genome Atlas (TCGA) and compared predicted regulatory interactions of miRNA isoforms (isomiRs) and their target mRNAs between normal and cancer samples. As a result, almost all highly expressed isomiRs lost negative correlation with their targets in prostate cancer samples compared to ones without the pathology. One exception to this trend was the canonical isomiR of hsa-miR-93-5p acquiring cancer-specific targets. Further analysis showed that cancer aggressiveness simultaneously increased with the expression level of this isomiR in both TCGA primary tumor samples and 153 blood plasma samples of P. Hertsen Moscow Oncology Research Institute patients' cohort analyzed by miRNA microarrays. AVAILABILITY AND IMPLEMENTATION: Source code and documentation of DCoNA are available at https://github.com/zhiyanov/DCoNA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Nucleic Acids Res ; 50(D1): D883-D887, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34396391

RESUMEN

Rapidly appearing SARS-CoV-2 mutations can affect T cell epitopes, which can help the virus to evade either CD8 or CD4 T-cell responses. We developed T-cell COVID-19 Atlas (T-CoV, https://t-cov.hse.ru) - the comprehensive web portal, which allows one to analyze how SARS-CoV-2 mutations alter the presentation of viral peptides by HLA molecules. The data are presented for common virus variants and the most frequent HLA class I and class II alleles. Binding affinities of HLA molecules and viral peptides were assessed with accurate in silico methods. The obtained results highlight the importance of taking HLA alleles diversity into account: mutation-mediated alterations in HLA-peptide interactions were highly dependent on HLA alleles. For example, we found that the essential number of peptides tightly bound to HLA-B*07:02 in the reference Wuhan variant ceased to be tight binders for the Indian (Delta) and the UK (Alpha) variants. In summary, we believe that T-CoV will help researchers and clinicians to predict the susceptibility of individuals with different HLA genotypes to infection with variants of SARS-CoV-2 and/or forecast its severity.


Asunto(s)
COVID-19/inmunología , Bases de Datos Factuales , Antígenos HLA/metabolismo , SARS-CoV-2/genética , Alelos , COVID-19/virología , Codón de Terminación , Epítopos de Linfocito T/inmunología , Antígenos HLA/genética , Antígenos HLA/inmunología , Antígeno HLA-B7/inmunología , Interacciones Huésped-Patógeno , Humanos , India , Mutación , SARS-CoV-2/patogenicidad , Reino Unido , Proteínas Virales/genética , Proteínas Virales/inmunología
3.
J Med Virol ; 95(8): e28996, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37515485

RESUMEN

In somatic cells, microRNAs (miRNAs) bind to the genomes of RNA viruses and influence their translation and replication. In London and Berlin samples represented in GISAID database, we traced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and divided these sequenced in two groups, "Ancestral variants" and "Omicrons," and analyzed them through the prism of the tissue-specific binding between host miRNAs and viral messenger RNAs. We demonstrate a significant number of miRNA-binding sites in the NSP4 region of the SARS-CoV-2 genome, with evidence of evolutionary pressure within this region exerted by human intestinal miRNAs. Notably, in infected cells, NSP4 promotes the formation of double-membrane vesicles, which serve as the scaffolds for replication-transcriptional complexes and protect viral RNA from intracellular destruction. In 3 years of selection, the loss of many miRNA-binding sites in general and those within the NSP4 in particular has shaped the SARS-CoV-2 genomes. With that, the descendants of the BA.2 variants were promoted as dominant strains, which define current momentum of the pandemics.


Asunto(s)
COVID-19 , MicroARNs , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , MicroARNs/genética , MicroARNs/metabolismo , Sitios de Unión , Berlin , Genoma Viral
4.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059403

RESUMEN

One of the main disadvantages of using DNA microarrays for miRNA expression profiling is the inability of adequate comparison of expression values across different miRNAs. This leads to a large amount of miRNAs with high scores which are actually not expressed in examined samples, i.e., false positives. We propose a post-processing algorithm which performs scoring of miRNAs in the results of microarray analysis based on expression values, time of discovery of miRNA, and correlation level between the expressions of miRNA and corresponding pre-miRNA in considered samples. The algorithm was successfully validated by the comparison of the results of its application to miRNA microarray breast tumor samples with publicly available miRNA-seq breast tumor data. Additionally, we obtained possible reasons why miRNA can appear as a false positive in microarray study using paired miRNA sequencing and array data. The use of DNA microarrays for estimating miRNA expression profile is limited by several factors. One of them consists of problems with comparing expression values of different miRNAs. In this work, we show that situation can be significantly improved if some additional information is taken into consideration in a comparison.


Asunto(s)
Algoritmos , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias de la Mama/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Sensibilidad y Especificidad , Análisis de Secuencia de ARN
5.
Cells Tissues Organs ; 207(3-4): 149-164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31593940

RESUMEN

Human platelet lysate (HPL) is a promising alternative to fetal calf serum (FCS) for the expansion of adipose tissue mesenchymal stromal cells (AT-MSCs) for translational medicine applications. However, some biological effects of HPL are still to be elucidated. We aimed to compare complex characteristics, such as cell morphology, proliferative activity, differentiation potential, and especially monolayer recovery, DNA integrity, and the gene expression pattern, between AT-MSCs cultured with HPL or FCS. Primary AT-MSC cultures were expanded in medium containing FCS or pooled HPL. Cell growth and proliferation were estimated by cell doubling time and the monolayer formation rate, while migration was assessed by wound-healing assay. The capacity for adipogenic and osteogenic differentiation was evaluated by alkaline phosphatase and Oil Red O staining. DNA integrity was evaluated by comet assay, and analysis of gene expression by real-time PCR. Media supplemented with HPL or FCS provided a similar surface immunophenotype, cell morphology (except some cell dimensions and a bigger colony size in HPL), DNA integrity, and rate of wound healing. Meanwhile, AT-MSC proliferated more intensively in HPL-supplemented media (especially at 5% HPL) and had a reduced doubling population time. AT-MSC in HPL had increased adipogenic potential and similar osteogenic potential in comparison with FCS. Our results indicate the feasibility and evident prospects for the use of pooled HPL as an alternative to FCS and safe non-xenogenic growth supplement for ex vivo expansion of clinical-grade AT-MSCs for regenerative medicine purposes.


Asunto(s)
Adipogénesis , Plaquetas/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis , Adulto , Técnicas de Cultivo de Célula , Proliferación Celular , Células Cultivadas , Ensayo Cometa , Medios de Cultivo/metabolismo , ADN/genética , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo
6.
Semin Cancer Biol ; 45: 50-57, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27639751

RESUMEN

The major issues hampering progress in the treatment of cancer patients are distant metastases and drug resistance to chemotherapy. Metastasis formation is a very complex process, and looking at gene signatures alone is not enough to get deep insight into it. This paper reviews traditional and novel approaches to identify gene signature biomarkers and intratumoural fluid pressure both as a novel way of creating predictive markers and as an obstacle to cancer therapy. Finally recently developed in vitro systems to predict the response of individual patient derived cancer explants to chemotherapy are discussed.


Asunto(s)
Biomarcadores de Tumor , Neoplasias/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Pronóstico , Transcriptoma , Resultado del Tratamiento
7.
Biochimie ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942135

RESUMEN

Breast cancer recurrence is associated with the growth of disseminated cancer cells that separate from the primary tumor before surgical treatment and hormonal therapy and form a metastatic niche in distant organs. We previously demonstrated that IGFBP6 expression is associated with the risk of early relapse of luminal breast cancer. Knockdown of IGFBP6 in MDA-MB-231 breast cancer cells increased their invasiveness, proliferation, and metastatic potential. In addition, the knockdown of IGFBP6 leads to impaired lipid metabolism. In this study, we demonstrated that the knockdown of the IGFBP6 gene, a highly selective inhibitor of IGF-II, led to a significant decline in the number of secreted extracellular vesicles (EVs) and altered cholesterol metabolism in MDA-MB-231 cells. Knockdown of IGFBP6 led to a decrease in the essential proteins responsible for the biogenesis of cholesterol LDLR and LSS, which reduced the amount by more than 13 times. In addition, the knockdown of IGFBP6 led to a possible change in the profile of adhesion molecules on the surface of EVs. The expression of L1CAM, IGSF3, EpCAM, CD24, and CD44 decreased, and the expression of EGFR increased. We can conclude that the negative prognostic value of low expression of this gene could be associated with increased activity of IGF2 in tumor-associated fibroblasts due to low secretion of IGFBP6 by tumor cells. In addition, changing the profile of adhesion molecules on the surface of tumor EVs may contribute to the more efficient formation of metastatic niches.

8.
BMC Physiol ; 13: 9, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24219008

RESUMEN

BACKGROUND: MiRNAs are essential mediators of many biological processes. The aim of this study was to investigate the dynamics of miRNA-mRNA regulatory networks during exercise and the subsequent recovery period. RESULTS: Here we monitored the transcriptome changes using microarray analysis of the whole blood of eight highly trained athletes before and after 30 min of moderate exercise followed by 30 min and 60 min of recovery period. We combined expression profiling and bioinformatics and analysed metabolic pathways enriched with differentially expressed mRNAs and mRNAs which are known to be validated targets of differentially expressed miRNAs. Finally we revealed four dynamically regulated networks comprising differentially expressed miRNAs and their known target mRNAs with anti-correlated expression profiles over time. The data suggest that hsa-miR-21-5p regulated TGFBR3, PDGFD and PPM1L mRNAs. Hsa-miR-24-2-5p was likely to be responsible for MYC and KCNJ2 genes and hsa-miR-27a-5p for ST3GAL6. The targets of hsa-miR-181a-5p included ROPN1L and SLC37A3. All these mRNAs are involved in processes highly relevant to exercise response, including immune function, apoptosis, membrane traffic of proteins and transcription regulation. CONCLUSIONS: We have identified metabolic pathways involved in response to exercise and revealed four miRNA-mRNA networks dynamically regulated following exercise. This work is the first study to monitor miRNAs and mRNAs in parallel into the recovery period. The results provide a novel insight into the regulatory role of miRNAs in stress adaptation.


Asunto(s)
Ejercicio Físico/fisiología , MicroARNs/sangre , ARN Mensajero/sangre , Adulto , Humanos , Masculino , Redes y Vías Metabólicas , Adulto Joven
9.
Pharmaceutics ; 15(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37376063

RESUMEN

ß-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals and microorganisms and possesses various biological activities, including anti-inflammatory, antioxidant, and anti-tumor properties. More recently, there has been mounting proof that ß-glucan functions as a physiologically active "biological response modulator (BRM)", promoting dendritic cell maturation, cytokine secretion, and regulating adaptive immune responses-all of which are directly connected with ß-glucan-regulated glucan receptors. This review focuses on the sources, structures, immune regulation, and receptor recognition mechanisms of ß-glucan.

10.
PeerJ ; 11: e14707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36691482

RESUMEN

In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the diminishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Alelos , Pandemias/prevención & control , Epítopos de Linfocito T , Linfocitos T CD8-positivos , Antígenos HLA-A
11.
Eur J Appl Physiol ; 112(3): 963-72, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21717121

RESUMEN

High and moderate intensity endurance exercise alters gene expression in human white blood cells (WBCs), but the understanding of how this effect occurs is limited. To increase our knowledge of the nature of this process, we investigated the effects of passing the anaerobic threshold (AnT) on the gene expression profile in WBCs of athletes. Nineteen highly trained skiers participated in a treadmill test with an incremental step protocol until exhaustion (ramp test to exhaustion, RTE). The average total time to exhaustion was 14:40 min and time after AnT was 4:50 min. Two weeks later, seven of these skiers participated in a moderate treadmill test (MT) at 80% peak O(2) uptake for 30 min, which was slightly below their AnTs. Blood samples were obtained before and immediately after both tests. RTE was associated with substantially greater leukocytosis and acidosis than MT. Gene expression in WBCs was measured using whole genome microarray expression analysis before and immediately after each test. A total of 310 upregulated genes were found after RTE, and 69 genes after MT of which 64 were identical to RTE. Both tests influenced a variety of known gene pathways related to inflammation, stress response, signal transduction and apoptosis. A large group of differentially expressed previously unknown small nucleolar RNA and small Cajal body RNA was found. In conclusion, a 15-min test to exhaustion was associated with substantially greater changes of gene expression than a 30-min test just below the AnT.


Asunto(s)
Umbral Anaerobio/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Leucocitos/metabolismo , Oxígeno/farmacología , Adolescente , Adulto , Prueba de Esfuerzo , Humanos , Leucocitos/efectos de los fármacos , Masculino , Análisis por Micromatrices , Esquí/fisiología , Adulto Joven
12.
PeerJ ; 10: e14205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275459

RESUMEN

Inaccurate cleavage of pri- and pre-miRNA hairpins by Drosha and Dicer results in the generation of miRNA isoforms known as isomiRs. isomiRs with 5'-end variations (5'-isomiRs) create a new dimension in miRNA research since they have different seed regions and distinct targetomes. We developed isomiRTar (https://isomirtar.hse.ru)-a comprehensive portal that allows one to analyze expression profiles and targeting activity of 5'-isomiRs in cancer. Using the Cancer Genome Atlas sequencing data, we compiled the list of 1022 5'-isomiRs expressed in 9282 tumor samples across 31 cancer types. Sequences of these isomiRs were used to predict target genes with miRDB and TargetScan. The putative interactions were then subjected to the co-expression analysis in each cancer type to identify isomiR-target pairs supported by significant negative correlations. Downstream analysis of the data deposited in isomiRTar revealed both cancer-specific and cancer-conserved 5'-isomiR expression landscapes. Pairs of isomiRs differing in one nucleotide shift from 5'-end had poorly overlapping targetomes with the median Jaccard index of 0.06. The analysis of colorectal cancer 5'-isomiR-mediated regulatory networks revealed promising candidate tumor suppressor isomiRs: hsa-miR-203a-3p-+1, hsa-miR-192-5p-+1 and hsa-miR-148a-3p-0. In summary, we believe that isomiRTar will help researchers find novel mechanisms of isomiR-mediated gene silencing in different types of cancer.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Neoplasias/genética , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento
13.
PeerJ ; 10: e13354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502206

RESUMEN

The T-cell immune response is a major determinant of effective SARS-CoV-2 clearance. Here, using the recently developed T-CoV bioinformatics pipeline (https://t-cov.hse.ru) we analyzed the peculiarities of the viral peptide presentation for the Omicron, Delta and Wuhan variants of SARS-CoV-2. First, we showed the absence of significant differences in the presentation of SARS-CoV-2-derived peptides by the most frequent HLA class I/II alleles and the corresponding HLA haplotypes. Then, the analysis was limited to the set of peptides originating from the Spike proteins of the considered SARS-CoV-2 variants. The major finding was the destructive effect of the Omicron mutations on PINLVRDLPQGFSAL peptide, which was the only tight binder from the Spike protein for HLA-DRB1*03:01 allele and some associated haplotypes. Specifically, we predicted a dramatical decline in binding affinity of HLA-DRB1*03:01 and this peptide both because of the Omicron BA.1 mutations (N211 deletion, L212I substitution and EPE 212-214 insertion) and the Omicron BA.2 mutations (V213G substitution). The computational prediction was experimentally validated by ELISA with the use of corresponding thioredoxin-fused peptides and recombinant HLA-DR molecules. Another finding was the significant reduction in the number of tightly binding Spike peptides for HLA-B*07:02 HLA class I allele (both for Omicron and Delta variants). Overall, the majority of HLA alleles and haplotypes was not significantly affected by the mutations, suggesting the maintenance of effective T-cell immunity against the Omicron and Delta variants. Finally, we introduced the Omicron variant to T-CoV portal and added the functionality of haplotype-level analysis to it.


Asunto(s)
Presentación de Antígeno , COVID-19 , Humanos , Alelos , COVID-19/genética , Cadenas HLA-DRB1 , Péptidos/genética , SARS-CoV-2/genética
14.
JCI Insight ; 7(9)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35389886

RESUMEN

The ongoing COVID-19 pandemic calls for more effective diagnostic tools. T cell response assessment serves as an independent indicator of prior COVID-19 exposure while also contributing to a more comprehensive characterization of SARS-CoV-2 immunity. In this study, we systematically assessed the immunogenicity of 118 epitopes with immune cells collected from multiple cohorts of vaccinated, convalescent, healthy unexposed, and SARS-CoV-2-exposed donors. We identified 75 immunogenic epitopes, 24 of which were immunodominant. We further confirmed HLA restriction for 49 epitopes and described association with more than 1 HLA allele for 14 of these. Exclusion of 2 cross-reactive epitopes that generated a response in prepandemic samples left us with a 73-epitope set that offered excellent diagnostic specificity without losing sensitivity compared with full-length antigens, and this evoked a robust cross-reactive response. We subsequently incorporated this set of epitopes into an in vitro diagnostic Corona-T-test, which achieved a diagnostic accuracy of 95% in a clinical trial. In a cohort of asymptomatic seronegative individuals with a history of prolonged SARS-CoV-2 exposure, we observed a complete absence of T cell response to our epitope panel. In combination with strong reactivity to full-length antigens, this suggests that a cross-reactive response might protect these individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Epítopos de Linfocito T , Humanos , Pandemias , Linfocitos T
15.
Front Genet ; 12: 791640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858489

RESUMEN

Intestinal epithelial cells exist in physiological hypoxia, leading to hypoxia-inducible factor (HIF) activation and supporting barrier function and cell metabolism of the intestinal epithelium. In contrast, pathological hypoxia is a common feature of some chronic disorders, including inflammatory bowel disease (IBD). This work was aimed at studying HIF-associated changes in the intestinal epithelium in IBD. In the first step, a list of genes responding to chemical activation of hypoxia was obtained in an in vitro intestinal cell model with RNA sequencing. Cobalt (II) chloride and oxyquinoline treatment of both undifferentiated and differentiated Caco-2 cells activate the HIF-signaling pathway according to gene set enrichment analysis. The core gene set responding to chemical hypoxia stimulation in the intestinal model included 115 upregulated and 69 downregulated genes. Of this set, protein product was detected for 32 genes, and fold changes in proteome and RNA sequencing significantly correlate. Analysis of publicly available RNA sequencing set of the intestinal epithelial cells of patients with IBD confirmed HIF-1 signaling pathway activation in sigmoid colon of patients with ulcerative colitis and terminal ileum of patients with Crohn's disease. Of the core gene set from the gut hypoxia model, expression activation of ITGA5 and PLAUR genes encoding integrin α5 and urokinase-type plasminogen activator receptor (uPAR) was detected in IBD specimens. The interaction of these molecules can activate cell migration and regenerative processes in the epithelium. Transcription factor analysis with the previously developed miRGTF tool revealed the possible role of HIF1A and NFATC1 in the regulation of ITGA5 and PLAUR gene expression. Detected genes can serve as markers of IBD progression and intestinal hypoxia.

16.
PLoS One ; 16(4): e0249424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33852600

RESUMEN

Analysis of regulatory networks is a powerful framework for identification and quantification of intracellular interactions. We introduce miRGTF-net, a novel tool for construction of miRNA-gene-TF networks. We consider multiple transcriptional and post-transcriptional interaction types, including regulation of gene and miRNA expression by transcription factors, gene silencing by miRNAs, and co-expression of host genes with their intronic miRNAs. The underlying algorithm uses information on experimentally validated interactions as well as integrative miRNA/mRNA expression profiles in a given set of samples. The latter ensures simultaneous tissue-specificity and biological validity of interactions. We applied miRGTF-net to paired miRNA/mRNA-sequencing data of breast cancer samples from The Cancer Genome Atlas (TCGA). Together with topological analysis of the constructed network we showed that considered players can form reliable prognostic gene signatures for ER-positive breast cancer. A number of signatures demonstrated remarkably high accuracy on transcriptomic data obtained by both microarrays and RNA sequencing from several independent patient cohorts. Furthermore, an essential part of prognostic genes were identified as direct targets of transcription factor E2F1. The putative interplay between estrogen receptor alpha and E2F1 was suggested as a potential recurrence factor in patients treated with tamoxifen. Source codes of miRGTF-net are available at GitHub (https://github.com/s-a-nersisyan/miRGTF-net).


Asunto(s)
Neoplasias de la Mama/genética , Redes Reguladoras de Genes , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , Programas Informáticos , Neoplasias de la Mama/patología , Femenino , Humanos , Recurrencia Local de Neoplasia/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
17.
Front Immunol ; 12: 641900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732261

RESUMEN

Human leukocyte antigen (HLA) class I molecules play a crucial role in the development of a specific immune response to viral infections by presenting viral peptides at the cell surface where they will be further recognized by T cells. In the present manuscript, we explored whether HLA class I genotypes can be associated with the critical course of Coronavirus Disease-19 by searching possible connections between genotypes of deceased patients and their age at death. HLA-A, HLA-B, and HLA-C genotypes of n = 111 deceased patients with COVID-19 (Moscow, Russia) and n = 428 volunteers were identified with next-generation sequencing. Deceased patients were split into two groups according to age at the time of death: n = 26 adult patients aged below 60 and n = 85 elderly patients over 60. With the use of HLA class I genotypes, we developed a risk score (RS) which was associated with the ability to present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides by the HLA class I molecule set of an individual. The resulting RS was significantly higher in the group of deceased adults compared to elderly adults [p = 0.00348, area under the receiver operating characteristic curve (AUC ROC = 0.68)]. In particular, presence of HLA-A*01:01 allele was associated with high risk, while HLA-A*02:01 and HLA-A*03:01 mainly contributed to low risk. The analysis of patients with homozygosity strongly highlighted these results: homozygosity by HLA-A*01:01 accompanied early deaths, while only one HLA-A*02:01 homozygote died before 60 years of age. Application of the constructed RS model to an independent Spanish patients cohort (n = 45) revealed that the score was also associated with the severity of the disease. The obtained results suggest the important role of HLA class I peptide presentation in the development of a specific immune response to COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Genotipo , Antígenos HLA-A/genética , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Factores de Edad , Anciano , Anciano de 80 o más Años , Alelos , COVID-19/patología , COVID-19/virología , Estudios de Cohortes , Femenino , Frecuencia de los Genes , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Analyst ; 135(12): 3183-92, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20953513

RESUMEN

Physical stress affects the immune system, activates the sympathetic (SNS) and parasympathetic (PNS) subsystems of autonomic nervous system (ANS), and increases the activity of the hypothalamic-pituitary-adrenal axis (HPA). The specific response of the major regulatory systems depends on the human functional state. Saliva is a unique diagnostic fluid, the composition of which immediately reflects the SNS, PNS, HPA and immune system response to stress. A new method of saliva biomarker determination by Attenuated Total Reflection Fourier-Transform Infrared (ATR FTIR) spectroscopy has been developed to monitor the exercise induced metabolic changes in saliva from male endurance athletes. The method has been tested using a group of professional athletes by analysing saliva samples collected before and after the exercise, and the saliva composition monitoring by ATR FTIR spectroscopy was shown to be suitable for real-time checking of response to stress.


Asunto(s)
Saliva/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estrés Fisiológico/fisiología , Adolescente , Adulto , Biomarcadores/análisis , Prueba de Esfuerzo , Humanos , Hidrocortisona/análisis , Inmunoglobulina A/análisis , Masculino , Proteínas/análisis , Adulto Joven
19.
PLoS One ; 15(7): e0235987, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726325

RESUMEN

Development of novel approaches for regulating the expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) is becoming increasingly important within the context of the ongoing COVID-19 pandemic since these enzymes play a crucial role in cell infection. In this work we searched for putative ACE2 and TMPRSS2 expression regulation networks mediated by various miRNA isoforms (isomiR) across different human organs using publicly available paired miRNA/mRNA-sequencing data from The Cancer Genome Atlas (TCGA) project. As a result, we identified several miRNA families targeting ACE2 and TMPRSS2 genes in multiple tissues. In particular, we found that lysine-specific demethylase 5B (JARID1B), encoded by the KDM5B gene, can indirectly affect ACE2 / TMPRSS2 expression by repressing transcription of hsa-let-7e / hsa-mir-125a and hsa-mir-141 / hsa-miR-200 miRNA families which are targeting these genes.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/enzimología , Regulación de la Expresión Génica , MicroARNs/genética , Peptidil-Dipeptidasa A/genética , Neumonía Viral/enzimología , ARN Mensajero/genética , Serina Endopeptidasas/genética , Regiones no Traducidas 3' , Enzima Convertidora de Angiotensina 2 , COVID-19 , Infecciones por Coronavirus/virología , Bases de Datos Genéticas , Redes Reguladoras de Genes , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , MicroARNs/metabolismo , Proteínas Nucleares/genética , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Isoformas de ARN/genética , ARN Mensajero/metabolismo , RNA-Seq , Proteínas Represoras/genética , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Análisis de la Célula Individual
20.
Front Mol Biosci ; 6: 122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781574

RESUMEN

Specificity of RNAi to selected target is challenged by off-target effects, both canonical and non-canonical. Notably, more than half of all human microRNAs are co-expressed with hosting them proteincoding genes. Here we dissect regulatory subnetwork centered on IGFBP6 gene, which is associated with low proliferative state and high migratory activity of basal-like breast cancer. We inhibited expression of IGFBP6 gene in a model cell line for basal-like breast carcinoma MDA-MB-231, then traced secondary and tertiary effects of this knockdown to LAMA4, a laminin encoding gene that contributes to the phenotype of triple-negative breast cancer. LAMA4-regulating miRNA miR-4274 and its host gene SORCS2 were highlighted as intermediate regulators of the expression levels of LAMA4, which correlated in a basal-like breast carcinoma sample subset of TCGA to the levels of SORCS2 negatively. Overall, our study points that the secondary and tertiary layers of regulatory interactions are certainly underappreciated. As these types of molecular event may significantly contribute to the formation of the cell phenotypes after RNA interference based knockdowns, further studies of multilayered molecular networks affected by RNAi are warranted.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda