Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Vis Exp ; (208)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39007613

RESUMEN

Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation technique capable of manipulating both cortical and subcortical structures with high precision. Conducting experiments involving humans necessitates careful planning of acoustic and thermal simulations. This planning is essential to adjust for bone interference with the ultrasound beam's shape and trajectory and to ensure TUS parameters meet safety requirements. T1- and T2-weighted, along with zero-time echo (ZTE) magnetic resonance imaging (MRI) scans with 1 mm isotropic resolution, are acquired (alternatively computed tomography x-ray (CT) scans) for skull reconstruction and simulations. Target and trajectory mapping are performed using a neuronavigational platform. SimNIBS is used for the initial segmentation of the skull, skin, and brain tissues. Simulation of TUS is carried over with the BabelBrain tool, which uses the ZTE scan to produce synthetic CT images of the skull to be converted into acoustic properties. We use a phased array ultrasound transducer with electrical steering capabilities. Z-steering is adjusted to ensure that the target depth is reached. Other transducer configurations are also supported in the planning tool. Thermal simulations are run to ensure temperature and mechanical index requirements are within the acoustic guidelines for TUS in human subjects as recommended by the FDA. During TUS delivery sessions, a mechanical arm assists in the movement of the transducer to the required location using a frameless stereotactic localization system.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
2.
Brain Stimul ; 17(2): 476-484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38621645

RESUMEN

BACKGROUND: Non-invasive brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct current stimulation hold promise for inducing brain plasticity. However, their limited precision may hamper certain applications. In contrast, Transcranial Ultrasound Stimulation (TUS), known for its precision and deep brain targeting capabilities, requires further investigation to establish its efficacy in producing enduring effects for treating neurological and psychiatric disorders. OBJECTIVE: To investigate the enduring effects of different pulse repetition frequencies (PRF) of TUS on motor corticospinal excitability. METHODS: T1-, T2-weighted, and zero echo time magnetic resonance imaging scans were acquired from 21 neurologically healthy participants for neuronavigation, skull reconstruction, and the performance of transcranial ultrasound and thermal modelling. The effects of three different TUS PRFs (10, 100, and 1000 Hz) with a constant duty cycle of 10 % on corticospinal excitability in the primary motor cortex were assessed using TMS-induced motor evoked potentials (MEPs). Each PRF and sham condition was evaluated on separate days, with measurements taken 5-, 30-, and 60-min post-TUS. RESULTS: A significant decrease in MEP amplitude was observed with a PRF of 10 Hz (p = 0.007), which persisted for at least 30 min, and with a PRF of 100 Hz (p = 0.001), lasting over 60 min. However, no significant changes were found for the PRF of 1000 Hz and the sham conditions. CONCLUSION: This study highlights the significance of PRF selection in TUS and underscores its potential as a non-invasive approach to reduce corticospinal excitability, offering valuable insights for future clinical applications.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Humanos , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen , Masculino , Potenciales Evocados Motores/fisiología , Método Doble Ciego , Femenino , Adulto , Estimulación Magnética Transcraneal/métodos , Adulto Joven , Imagen por Resonancia Magnética , Tractos Piramidales/fisiología , Tractos Piramidales/diagnóstico por imagen , Inhibición Neural/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda